International Spring School Statistical Thermodynamics, Santiago de Chile Monday, November 27, 2017 Lecture 15

Thermodynamic boundary conditions in molecular simulation

Prof. Dr. Wilfred F. van Gunsteren ETH Zürich, Switzerland

Definition of a model for a computer simulation

For any system four choices have to be made

Definition of a model for a computer simulation

For any system four choices have to be made

Molecular simulation: algorithms, boundary conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

- 1. Newton: molecular dynamics simulation (MD)
- 2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

- 1. Metropolis Monte Carlo simulation (MC)
- 2. Replica exchange technique (RE)

2. Boundary conditions

- 1. Spatial boundary conditions
- 2. Thermodynamic boundary conditions
 - temperature
 - pressure
 - other

3. Constraints

- 1. Distance constraints
- 2. Other constraints

4. MD algorithm

Molecular Dynamics with Coupling to an External Bath

Standard (micro-canonical) MD: independent parameters:

number of particles, N volume, V total energy, E_{tot}

conserved quantities:

 E_{tot} \bar{P}_{tot} = total momentum L_{tot} = total angular momentum (only in vacuo, **not** with PBC)

dependent quantities:

temperature = Tpressure = P

Why apply MD at constant T and/or P?

-study system properties as a function of T and P rather than E and V(normally one measures at constant T and P) -long-range Coulomb force: ~ r^{-2} noise \rightarrow rising T use of cut-off radius introduces heat into the system:

positions

-study of non-equilibrium systems: maintain a P or T gradient.

by scaling the *velocities* **Couple:** *temperature* by scaling the pressure

Definition of temperature and pressure

• Macroscopic temperature, T, is defined from the average kinetic energy per degree of freedom

$$\mathcal{K}(N,\mathbf{p},\mathbf{q}) = 3N \frac{k_{B}T}{2}$$

• From this we define an instantaneous temperature

$$\mathcal{T}(N,\mathbf{p},\mathbf{q}) = \frac{2\mathcal{K}(N,\mathbf{p},\mathbf{q})}{3Nk_B}$$
 with $T = \langle \mathcal{T}(N,\mathbf{p},\mathbf{q}) \rangle$

• Virial theorem

$$\mathbf{K} = W_{tot} = W + \frac{3}{2}PV$$

• In terms of instantaneous properties

$$\mathcal{W}(N,\mathbf{q}) = -\frac{1}{2} \sum_{i=1}^{N} \mathbf{r}_{i} \otimes \mathbf{F}_{i}(\mathbf{r})$$
$$\mathcal{P}(N,\mathbf{q},\mathbf{p}) = \frac{2\left[\mathcal{K}(N,\mathbf{q}) - \mathcal{W}(N,\mathbf{q})\right]}{3\mathcal{V}(N,\mathbf{q})}$$

 $\mathcal{W}(N,\mathbf{q}) \text{ and } \mathcal{P}(N,\mathbf{q},\mathbf{p}) \text{ are tensors}$ $\mathcal{K}(N,\mathbf{p}) \text{ is written as diagonal}$ $\mathcal{K}(N,\mathbf{p}) = \sum (2m_i)^{-1} \mathbf{p}_i \otimes \mathbf{p}_i$ with $P = \langle \operatorname{Tr}(\mathcal{P}(N,\mathbf{q},\mathbf{p})) \rangle$

Trace: the sum of the diagonal elements

Thermostats

Four ways to control the temperature T(t)

- 1. Constraint method (isokinetic simulation) $T(t) = T_{ref}$
- 2. Stochastic method (Langevin dynamics)

 $m_{i}\frac{d\vec{v}_{i}(t)}{dt} = \vec{f}_{i}(t) - m_{i}\gamma_{i}\vec{v}_{i}(t) + \vec{f}_{i}^{st}(t) \qquad \left\langle \vec{f}_{i}^{st}(0)\vec{f}_{j}^{st}(t) \right\rangle = 6m_{i}k_{B}T_{ref}\gamma_{i}\delta_{ij}\delta(t)$

Distorts the dynamics of individual particles

3. Extended system method (Nosé-Hoover)

$$m_{i} \frac{d\vec{v}_{i}(t)}{dt} = \vec{f}_{i}(t) - m_{i} \gamma_{NH} \vec{v}_{i}(t) \qquad \qquad \frac{d\gamma_{NH}(t)}{dt} = (\tau_{T,NH})^{-2} (\frac{T(t)}{T_{ref}} - 1)$$

May introduce spurious oscillations

4. Weak-coupling method

$$m_{i}\frac{d\vec{v}_{i}(t)}{dt} = \vec{f}_{i}(t) + m_{i}(2\tau_{T})^{-1}(\frac{T_{ref}}{T(t)} - 1)\vec{v}_{i}(t)$$

$$\frac{dT(t)}{dt} = \tau_T^{-1} \Big[T_{ref} - T(t) \Big]$$

Statistical-mechanical ensemble ?

Molecular dynamics with (weak) coupling to a temperature bath

Variety of methods:

- 1. Constraint method
- 2. Stochastic method Langevin equation
- 3. Extended system method
- 4. Weak coupling method

- Hamiltonian, but non-physical
- sizeable effects on atomic trajectories

2nd order coupling, spurious oscillations

$$\frac{dT(t)}{dt} = \frac{1}{\tau_T} \left[T_{bath} - T(t) \right]$$

$$\Delta E_{kin} = (\lambda^2(t) - 1) \frac{1}{2} N_{df} k_B T(t)$$

$$= N_{df} c_V^{df} \Delta T$$

$$\lambda(t) = \left[1 + \frac{2c_V^{df}}{k_B} \frac{\Delta t}{\tau_T} \left[\frac{T_{bath}}{T(t)} - 1 \right] \right]^{\frac{1}{2}}$$

 $\frac{dE_{kin}(t)}{dt} = \text{constant}\left[T_{bath} - T(t)\right]$

first order, physical, but ensemble ?

Energy fluctuations in liquid water as function of the coupling strength τ_{T}

H.J.C. Berendsen et al., J. Chem. Phys., 81 (1984) 3684 - 3690

Coupling to a heat bath at $T = T_{ref}$: stochastic methods

1. Collision model:

The velocity of a randomly selected particle after each time period $\tau_{collision}$ is chosen afresh from a Maxwell-Boltzmann velocity distribution at $T = T_{ref}$

This results in:

$$\langle T \rangle = T_{ref}$$

2. Langevin model:

A frictional force $-m_i \gamma_i \vec{v}_i$ and a stochastic force \vec{f}_i^{st} are added to the particle equations of motion:

$$m_i \frac{d\vec{v}_i(t)}{dt} = \vec{f}_i(t) - m_i \gamma_i \vec{v}_i(t) + \vec{f}_i^{st}(t)$$

$$/(\vec{c}_{st})^2$$

This results in:

$$\langle T \rangle = \frac{\left\langle \left(\vec{f}_i^{st} \right)^2 \right\rangle}{6m_i \gamma_i k_B} = T_{ref}$$

Energy distributions for different thermostats

Liquid argon (1000 atoms), periodic boundary conditions, 80 K, 1400 kgm⁻³

W.F.van Gunsteren/Santiago de Chile 271117/11

large τ_T : *micro-canonical* distribution (width E_{not} < canonical width) **NH** and **LD**: *canonical* distribution independent of τ_{NH} or γ

Atom velocity auto-correlation function for different thermostats

Liquid argon (1000 atoms), periodic boundary conditions, 80 K, 1400 kgm⁻³

W.F.van Gunsteren/Santiago de Chile 271117/12

WC and NH: no distortion of atom dynamics (global *T*-coupling) **Langevin Dynamics**: *distortion of dynamics increases with* γ

Potential energy auto-correlation function for different thermostats

Liquid argon (1000 atoms), periodic boundary conditions, 80 K, 1400 kgm⁻³

Z. Lin & W.F. van Gunsteren, J. Chem. Phys. 143 (**2015**) 034110

W.F.van Gunsteren/Santiago de Chile 271117/13

WC: no correlation irrespective the coupling strength (1st order coupling) **NH:** spurious oscillations depending on coupling strength (2nd order coupling) **LD:** correlation increases with size of the friction γ

Issues with thermostats

- Temperature is a system property
 - We don't know the temperature of individual particles

Hot solvent, cold protein

- Solvent consists of many degrees of freedom

$$T_{prot} = 200 \text{ K}$$

$$T_{solv} = 301 \text{ K}$$

$$T_{tot} = 298 \text{ K}$$

$$T_{tot} = 298 \text{ K}$$

$$T_{tot} = \left[N_{dof}^{prot} \mathcal{T}_{prot} + N_{dof}^{solv} \mathcal{T}_{solv} \right] / N_{dof}^{tot}$$

- Due to rotational freedom, the solvent molecules are more prone to cut-off noise than the solute molecule
- This leads to stronger heating up of the solvent
- This heat does not leak away to the solute (insufficient solute solvent collisions)

Remedy

Separately couple the protein and the solvent to individual heat baths

Issues with thermostat

• Flying ice-cube problem

- Kinetic energy of uncoupled degrees of freedom accumulates
 - No interconversion of energy through collisions
- Kinetic energy accumulates in translational degrees of freedom and depletes from internal degrees of freedom

similarly in vacuum simulations: the protein turns into a rotating rod

Possible solutions

- do not apply scaling to (molecular) translational degrees of freedom
- couple translational and internal-rotational degrees of freedom separately
- remove centre-of-mass motion from time to time (discontinuity)
- apply roto-translational constraints to the protein

Molecular Dynamics with coupling to a pressure bath

Variety of methods:

- 1. Constraint method
- 2. Extended system method

Hamiltonian, but not physical

2nd order coupling spurious oscillations

3. Stochastic method

 $M_{V}\ddot{V}(t) = -\left[P_{bath} - P(t)\right] - M_{V}\gamma_{V}\dot{V}(t) + f_{V}^{stoch}(t)$

with

$$\left\langle f_{V}^{st}(0)f_{V}^{st}(t)
ight
angle =2M_{V}k_{B}T_{bath}\gamma_{V}\delta(t)$$

4. Weak coupling method

$$\frac{dP(t)}{dt} = \frac{1}{\tau_{P}} \left[P_{bath} - P(t) \right]$$
$$\Delta P = -\frac{1}{\beta_{P}V} \Delta V$$

1st order, physical

1st order, physical

$$\mu(t) = \left[1 - \frac{\beta_T \Delta t}{\tau_P} \left[P_{bath} - P(t)\right]\right]^{\frac{1}{3}}$$

Virial theorem:

$$PV = \frac{2}{3} \left[\left\langle E_{kin} \right\rangle - \left\langle W \right\rangle \right] =$$

$$PV = \frac{2}{3} \left[\left\langle \frac{1}{2} \sum_{i=1}^{N} m_i \vec{v}_i^2 \right\rangle - \left\langle -\frac{1}{2} \sum_{i

$$\vec{r}_{ij} = \vec{r}_i - \vec{r}_j \qquad \vec{f}_{ij} = \text{force on atom } i \text{ by atom } j$$
Derivations:$$

1. $P = -\frac{\partial A}{\partial V}\Big|_{T} = k_{B}T \frac{\partial \ln Z}{\partial V}\Big|_{T}$, i.e. from the partition function

2. via Newton: $m_i \dot{v}_i = f_i$

with f from **external** versus internal forces

3. via **momentum flux** through a surface

W.G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991)

Unit cell dimensions as a function of temperature

Crystals of a cytidine-derivative

(3',5'-o-(tetra isopropyl-1,3-disiloxanediyl)-cytidine)

MD at constant temperature and pressure

Dimension of box (nm)	T ₀ =113K		T ₀ =289K	
	exp.	MD (50ps)	exp.	MD (160ps)
2a	1.7884	1.792	1.7776	1.790
2b	2.0648	2.050	2.0774	2.064
С	2.7576	2.772	2.8645	2.822
Volume (nm ³)	10.183	10.180	10.563	10.430

Temperature effect qualitatively reproduced

Atomic van der Waals radii are on average correct (GROMOS)

MD at constant temperature, pressure

Temperature

• If there is a small flow of kinetic energy between weakly coupled parts of the system (equipartition not maintained using weak coupling) then

couple subsystems separately to T-baths

Pressure

- The pressure fluctuates much more than the temperature. difference between 2 very large numbers kinetic energy (expansion) and virial (attractive forces)
- Isotropic coupling (uniform scaling in x,y,z directions)
- Anisotropic coupling (e.g. for membrane simulations)
- Pressure depends on temperature:

P(t) = 2/3 [Ekin(t) - W(t)] / V(t)

choose $\tau_{pressure} > \tau_{temperature}$ for couplings to P- and T-baths, otherwise spurious oscillations may occur

Weak-coupling barostat

- The pressure can be given as a tensor, then also µ, the spatial scaling factor, is a tensor
- scaling is a matrix multiplication of the vector **r** and the box vector
- isotropic pressure scaling: same pressure in all directions
- anisotropic pressure scaling: different pressure in x, y and z
- fully anisotropic scaling: the box shape can change
- combinations of the above: x and y coupled to one pressure, (semi-isotropic) z coupled separately (membranes)

Molecular simulation: algorithms, boundary conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

- 1. Newton: molecular dynamics simulation (MD)
- 2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

- 1. Metropolis Monte Carlo simulation (MC)
- 2. Replica exchange technique (RE)

2. Boundary conditions

- 1. Spatial boundary conditions
- 2. Thermodynamic boundary conditions
 - temperature
 - pressure
 - other

3. Constraints

- 1. Distance constraints
- 2. Other constraints
- 4. MD algorithm

MD leap-frog algorithm with: periodicity constraints ≻all **T-scaling**

- P-scaling **1. Evaluate** $f_i(t)$ from $V(\{x_i(t)\})$ (periodicity) (put particles in box) (calculate P(t) from virial)
- **2. Compute velocities:** $v_i(t + \Delta t/2) = v_i(t \Delta t/2) + m_i^{-1}f_i(t)\Delta t$
- 3. Scale velocities:

$$v_i \left(t + \Delta t/2 \right) = v_i \left(t + \Delta t/2 \right) \cdot \left[1 + \frac{2c_v^{df}}{k_B} \frac{\Delta t}{\tau_T} \left\{ \frac{T_{ref}}{T(t - \Delta t/2)} - 1 \right\} \right]^{\frac{1}{2}}$$

- $x_i(t + \Delta t) = x_i(t) + v_i(t + \Delta t/2)\Delta t$ 4. Compute positions:
- 5. Satisfy constraints: $({x_i(t)}, {x_i^{uc}(t + \Delta t)}, {x_i(t + \Delta t)})$ (periodicity) SHAKE **constrained velocities:** $v_i(t + \Delta t/2) = \left[x_i(t + \Delta t) - x_i(t) \right] / \Delta t$
- 6. Compute temperature: $T(t + \Delta t/2) = \sum_{i=1}^{3N} \frac{1}{2} m_i v_i^2 (t + \Delta t/2) / (N_{df} \frac{1}{2} k_B)$
- 7. Scale positions: scale box lenghts: a, b, c $x_{i}(t + \Delta t) = x_{i}(t + \Delta t) \cdot \left[1 - \frac{\beta_{T} \Delta t}{\tau_{D}} \left[P_{0} - P(t)\right]\right]^{\frac{1}{3}}$

Molecular simulation: algorithms, boundary conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

- 1. Newton: molecular dynamics simulation (MD)
- 2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

- 1. Metropolis Monte Carlo simulation (MC)
- 2. Replica exchange technique (RE)

2. Boundary conditions

- 1. Spatial boundary conditions
- 2. Thermodynamic boundary conditions
 - temperature
 - pressure
 - other

3. Constraints

- 1. Distance constraints
- 2. Other constraints

4. MD algorithm

Spatial distribution of licences GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: <u>http://www.gromos.net</u>