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Definition of a model for a computer simulation

MOLECULAR

MODEL

Degrees of freedom: 

what are the elementary 

entities or “particles” 

Interactions or 

forces between 

“particles”

Boundary conditions

or interface to the 

outside world

Methods to generate 

configurations along

degrees of freedom

e.g. 
temperature

pressure
walls

external forces

For any system four choices have to be made

Interaction =
physico-chemical-

biological
knowledge

e.g. equations of motion
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Molecular simulation: algorithms, boundary 
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

1. Newton: molecular dynamics simulation (MD)

2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

1. Metropolis Monte Carlo simulation (MC)

2. Replica exchange technique (RE)

2. Boundary conditions

1. Spatial boundary conditions

2. Thermodynamic boundary conditions

- temperature

- pressure

- other

3. Constraints

1. Distance constraints

2. Other constraints

4. MD algorithm
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Standard (micro-canonical) MD:

independent parameters: number of particles, N
volume, V
total energy, Etot

conserved quantities: Etot

= total momentum
= total angular momentum

(only in vacuo, not with PBC)

dependent quantities: temperature = T
pressure = P

Molecular Dynamics with Coupling to an External Bath

totp


totL


Why apply MD at constant T and/or P ?

-study system properties as a function of T and P rather than E and V
(normally one measures at constant T and P)

-long-range Coulomb force: ~ r-2

use of cut-off radius introduces heat into the system:

-study of non-equilibrium systems:  maintain a P or T gradient.

} noise  rising T

Couple: temperature by scaling the velocities 

pressure by scaling the positions  
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• Macroscopic temperature, T, is defined from the 
average kinetic energy per degree of freedom

• From this we define an instantaneous temperature 

• Virial theorem

• In terms of instantaneous properties

Definition of temperature and pressure

  
K =W

tot
= W + 3

2
PV

and                 are tensors

is written as diagonal     

Trace: the sum of the diagonal elements
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Thermostats

Four ways to control the temperature T(t)

1. Constraint method (isokinetic simulation)

T(t) = Tref

2. Stochastic method (Langevin dynamics)

Distorts the dynamics of individual particles

3. Extended system method (Nosé-Hoover)

May introduce spurious oscillations

4. Weak-coupling method

Statistical-mechanical ensemble ?
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Molecular dynamics with (weak) coupling to
a temperature bath

Variety of methods:

1. Constraint method Hamiltonian, but non-physical

2. Stochastic method sizeable effects on 

Langevin equation atomic trajectories

3.  Extended system method 2nd order coupling,
spurious oscillations

4.  Weak coupling method

first order, physical, 

but ensemble ?
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H.J.C. Berendsen et al., J. Chem. Phys., 81 (1984) 3684 - 3690  

strong weak coupling

O.K.

Energy fluctuations in liquid water
as function of the coupling strength τT
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1. Collision model:

The velocity of a randomly selected particle after each time 
period          is chosen afresh from a Maxwell-Boltzmann velocity 
distribution at

This results in:

2. Langevin model:

A frictional force and a stochastic force

are added to the particle equations of motion:

This results in:

Coupling to a heat bath at           : 
stochastic methods
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Energy distributions for different thermostats

WC:

Weak 

coupling

NH:

Nosé-

Hoover

LD:

Langevin

dynamics

Liquid argon (1000 atoms), periodic boundary conditions, 80 K, 1400 kgm-3

WC: small τT : isokinetic distribution (width Epot = canonical width)   

large τT : micro-canonical distribution (width Epot < canonical width)

NH and LD:     canonical distribution independent of  τNH or γ
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Z. Lin & W.F. van Gunsteren, 
J. Chem. Phys. 143 (2015) 034110
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Atom velocity auto-correlation function for 
different thermostats

Liquid argon (1000 atoms), periodic boundary conditions, 80 K, 1400 kgm-3

WC and NH: no distortion of atom dynamics (global T-coupling)

Langevin Dynamics: distortion of dynamics increases with  γ

Z. Lin & W.F. van Gunsteren, 
J. Chem. Phys. 143 (2015) 034110
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Potential energy auto-correlation function for 
different thermostats

Liquid argon (1000 atoms), periodic boundary conditions, 80 K, 1400 kgm-3

WC: no correlation irrespective the coupling strength (1st order coupling)

NH: spurious oscillations depending on coupling strength (2nd order coupling)

LD: correlation increases with size of the friction γ

Z. Lin & W.F. van Gunsteren, 
J. Chem. Phys. 143 (2015) 034110
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• Temperature is a system property

– We don’t know the temperature of individual particles 

• Hot solvent, cold protein

– Solvent consists of many degrees of freedom

– Due to rotational freedom, the solvent molecules are more 
prone to cut-off noise than the solute molecule

– This leads to stronger heating up of the solvent

– This heat does not leak away to the solute (insufficient 
solute – solvent collisions)

Remedy

Separately couple the protein and the solvent 

to individual heat baths

Issues with thermostats

Tprot = 200 K

Tsolv  = 301 K

Ttot    = 298 K
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• Flying ice-cube problem

– Kinetic energy of uncoupled degrees of freedom accumulates

• No interconversion of energy through collisions 

– Kinetic energy accumulates in translational degrees of freedom and 
depletes from internal degrees of freedom

• Possible solutions

– do not apply scaling to (molecular) translational degrees of freedom

– couple translational and internal-rotational degrees of freedom 
separately

– remove centre-of-mass motion from time to time (discontinuity)

– apply roto-translational constraints to the protein

similarly in vacuum simulations: 

the protein turns into a rotating rod

Issues with thermostat
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Molecular Dynamics with coupling to
a pressure bath

Variety of methods:

1. Constraint method Hamiltonian, but not physical

2. Extended system method 2nd order coupling
spurious oscillations

3.  Stochastic method

with

4.  Weak coupling method

 (0) ( ) 2 ( )
V

st st

V V V B bath
Tf f t M k t

 
( )

1

)
1

(bath

P

T

P td

dt

P V
V

tP P




 

   

   

1
3

(1 )bat
T

h

P

Pt P t
t




 
   
 

            
 b

ch

t

sto

a h
M V t M V t f t

V V VV
P tP

1st order, physical

1st order, physical



W.F.van Gunsteren/Santiago de Chile 271117/17

Virial theorem:

= force on atom i by atom j

Derivations:

1. , i.e. from the partition function

2. via Newton:

with     from external versus internal forces

3. via momentum flux through a surface
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Unit cell dimensions as a function of temperature

Crystals of a cytidine-derivative
(3‘,5‘-o-(tetra isopropyl-1,3-disiloxanediyl)-cytidine)

MD at constant temperature and pressure

Dimension of

box (nm)

T0=113K T0=289K

exp. MD (50ps) exp. MD (160ps)

2a 1.7884 1.792 1.7776 1.790

2b 2.0648 2.050 2.0774 2.064

c 2.7576 2.772 2.8645 2.822

Volume (nm3) 10.183 10.180 10.563 10.430

Temperature effect qualitatively reproduced

Atomic van der Waals radii are on average correct (GROMOS)
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Temperature

• If there is a small flow of kinetic energy between weakly coupled 
parts of the system (equipartition not maintained using weak 
coupling) then

couple subsystems separately to T-baths

Pressure

• The pressure fluctuates much more than the temperature.   
difference between 2 very large numbers 

kinetic energy (expansion) and virial (attractive forces)

• Isotropic coupling (uniform scaling in x,y,z directions) 

• Anisotropic coupling (e.g. for membrane simulations)

• Pressure depends on temperature:

P(t) = 2/3 [Ekin(t) – W(t)] / V(t)

choose τpressure >  τ temperature for couplings to P- and T-baths,

otherwise spurious oscillations may occur

MD at constant temperature, pressure



W.F.van Gunsteren/Santiago de Chile 271117/20

• The pressure can be given as a tensor, then also μ, the spatial 

scaling factor, is a tensor

• scaling is a matrix multiplication of the vector r and the box vector

• isotropic pressure scaling: same pressure in all directions

• anisotropic pressure scaling: different pressure in x, y and z

• fully anisotropic scaling: the box shape can change

• combinations of the above: x and y coupled to one pressure, 

(semi-isotropic) z coupled separately (membranes)

Weak-coupling barostat
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Molecular simulation: algorithms, boundary 
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

1. Newton: molecular dynamics simulation (MD)

2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

1. Metropolis Monte Carlo simulation (MC)

2. Replica exchange technique (RE)

2. Boundary conditions

1. Spatial boundary conditions

2. Thermodynamic boundary conditions

- temperature

- pressure

- other

3. Constraints

1. Distance constraints

2. Other constraints

4. MD algorithm
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MD leap-frog algorithm with:  periodicity

constraints
T-scaling

P-scaling

all

1. Evaluate                                    (periodicity)
(put particles in box) (calculate        from virial)  

2. Compute velocities:

3. Scale velocities:

4. Compute positions:

5. Satisfy constraints:

SHAKE

constrained velocities:

6. Compute temperature:

7. Scale positions: scale box lenghts: a, b, c
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Molecular simulation: algorithms, boundary 
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

1. Newton: molecular dynamics simulation (MD)

2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

1. Metropolis Monte Carlo simulation (MC)

2. Replica exchange technique (RE)

2. Boundary conditions

1. Spatial boundary conditions

2. Thermodynamic boundary conditions

- temperature

- pressure

- other

3. Constraints

1. Distance constraints

2. Other constraints

4. MD algorithm
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Spatial distribution of licences 

GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: http://www.gromos.net


