International Spring School Statistical Thermodynamics, Santiago de Chile Monday, November 27, 2017 Lecture 14

Spatial boundary conditions and geometric constraints in molecular simulation

Prof. Dr. Wilfred F. van Gunsteren ETH Zürich, Switzerland

Molecular simulation: algorithms, boundary conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

- 1. Newton: molecular dynamics simulation (MD)
- 2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

- 1. Metropolis Monte Carlo simulation (MC)
- 2. Replica exchange technique (RE)

2. Boundary conditions

- **1. Spatial boundary conditions**
- 2. Thermodynamic boundary conditions
 - temperature
 - pressure
 - other

3. Constraints

- **1. Distance constraints**
- 2. Other constraints
- 4. MD algorithm

Definition of a model for a computer simulation

For any system four choices have to be made

Definition of a model for a computer simulation

For any system four choices have to be made

Molecular simulation: algorithms, boundary conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

- 1. Newton: molecular dynamics simulation (MD)
- 2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

- 1. Metropolis Monte Carlo simulation (MC)
- 2. Replica exchange technique (RE)

2. Boundary conditions

1. Spatial boundary conditions

- 2. Thermodynamic boundary conditions
 - temperature
 - pressure
 - other

3. Constraints

- 1. Distance constraints
- 2. Other constraints

4. MD algorithm

TREATMENT OF SPATIAL BOUNDARIES

Number of atoms N in system $<< N_{avogadro} = 10^{23}$

1. No wall: in vacuo

distortive effects:

- surface tension will reduce surface area

-> makes molecules more spherical:

DNA, insulin: deformed

myoglobin, cytochrome: less deformed

partial remedy: use solvent to make system spherical

use solvation area force

- dielectric permittivity of vacuum = 1

charge – charge interactions in vacuum are larger than in polar solvent : $\varepsilon > 1$; water: $\varepsilon = 80$

partial remedy: reduce charges or ε

DISTORTIVE EFFECT OF VACUUM BOUNDARY CONDITIONS

e.g. hen-egg-white lysozyme (protein, 129 residues)

W.F.van Gunsteren/Santiago de Chile 27111 47J. Smith et al., Biochemistry 34 (1995) 3014 - 3021

+ slower dynamics

Simulation in vacuum

• Simulating a molecule in vacuum:

• Tends to get stuck in a single conformation

- Surface tension leads to globular molecules
- No collisions and interactions with solvent molecules
- No dielectric screening:

electrostatic interactions are not reduced by solvent

$$\mathcal{V}^{el} = \frac{1}{4\pi\varepsilon_0\varepsilon} \frac{q_i q_j}{r_{ij}}$$

80 for water

Adaptation of a force field to a vacuum boundary condition

GROMOS force field: not vacuum

What to do when using it for *in vacuo* simulations?

vacuo parameters(37D4): solution parameters (37C4): GROMOS: 43A1 (45A4, 53A6) 43B1 (45B4, 53B6) neutralise charged groups retaining H-bond capacity Lys: $C_{12}^{1/2}(N) = 1500 \left[\text{kcal/mol} \text{Å}^{12} \right]^{1/2}$ $127_{C} \cdot 129_{N} \xrightarrow{H} \cdot 248 e$ $C_{12}^{1/2}(N \text{ of peptide}) = 950 \xrightarrow{H} \cdot 248 e$ $C_{12}^{1/2}(N \text{ of peptide}) = 950 \xrightarrow{H} \cdot 248 e$ $C_{12}^{1/2}(N \text{ of peptide}) = 950 \xrightarrow{H} \cdot 248 e$ q(H of peptide) = +.28e+.72 0 .36 $C_{12}^{1/2}(0) = 900/1500 + .38 - .38 e$ Asp: Glu: $C_{12}^{1/2}(0) = 550/550$ $C_{12}^{1/2}(O \text{ of carbonyl}) = 550$ Arg, N-terminus, C-terminus: likewise

Implicit solvation models I

Vacuum

Implicit solvation

- Surface effects (surface tension)
- No dielectric screening
- Surrounding is a continuum with dielectric constant ε > 1
- Different ε within and outside the solute: solving Poisson-Boltzmann equation
- Nonpolar interaction proportional to solvent accessible surface area

Stochastic dynamics

- Change of the equations of motion
- Additional frictional coefficient represents viscosity of solvent
- Random (stochastic) force represents collision with solvent

$$\mathbf{F}(t) = -\frac{\partial \mathcal{V}}{\partial \mathbf{r}} - \boldsymbol{\zeta} \mathbf{p}(t) + \mathbf{F}_{stoch}(t)$$

Implicit solvent models II

• Take the solvent into account in a mean-field manner:

- average dielectric screening and solvation captured
- no structure in the solvent
- no explicit interactions (hydrogen bonds) with the solute
- still distortive boundary effects

• In general:

- short range interactions are really bad
- long range interactions may be reasonably described
- depends strongly on the parameters of the model
 - surface tension of an apolar solute: solvent-accessible-surface-area (SASA) proportionality term
 - \bullet choice of dielectric permittivity ϵ in the protein

Advice: Do avoid implicit solvation models

J.R. Allison et al., J. Phys. Chem. B 115 (2011) 4547 - 4557

DISTORTIVE EFFECT OF VACUUM BOUNDARY CONDITIONS

2. extended wall region: buffer region

restrict motion of atoms in layer adjacent to the vacuum to inhibit distortion

- (harmonic) position restraining
- mean force from outside (vacuo)
- stochastic force from outside

3. periodic: infinite periodic system

- cube, rectangle
- dodecahedron
- truncated octahedron

more spherical

distortive effect: anisotropy -> cube-corner effect

PERIODIC BOUNDARY CONDITIONS: avoiding surface effects

- The simulated system (solute + solvent) consists of particles within a reference computational box of space-filling shape (e.g. cube)
- At each simulation step, particles exiting the box through one face are translated so that they reenter the box through the opposing face
- This procedure mimics a system consisting of an infinite lattice of periodic copies of the reference box (→no interface to vacuum !)
- Only the coordinates of particles in the central box are actually stored in the computer

Periodic boundary conditions Space filling box shapes

Preferred over extended wall boundary conditions

Spatial periodic boundary conditions:

Periodic boundary conditions:

Calculation of force on particle i due to particle j or *one* of its periodic images j', j'', j'''

Condition: 2 $R_{cut} < L_{box}$

In order to avoid interaction between periodic images

For a solute of radius R_{sol} we have

Additional condition: 2 $R_{sol} + R_{cut} < L_{box}$

Upon violation of this condition:

Aggregation of periodic images

Molecular simulation: algorithms, boundary conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

- 1. Newton: molecular dynamics simulation (MD)
- 2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

- 1. Metropolis Monte Carlo simulation (MC)
- 2. Replica exchange technique (RE)

2. Boundary conditions

- 1. Spatial boundary conditions
- 2. Thermodynamic boundary conditions
 - temperature
 - pressure
 - other

3. Constraints

- 1. Distance constraints
- 2. Other constraints

4. MD algorithm

Constraints in molecular simulation

Why constraints, consequences
 Techniques to impose constraints
 Enhanced efficiency
 Metric tensor effects
 Physical effects

Constrained ensembles

Why use constraints?

- elimination of highest frequency motions
 - \rightarrow often uninteresting
 - \rightarrow maybe unphysical
 - \rightarrow limit time step Δt
- biasing of the sampling
 - \rightarrow towards phase space region of interest

Consequence:

- modifies ensemble averages when using non-Cartesian coordinates:
 - \rightarrow mass-metric tensor effect

Methods to impose constraints:

- Use of generalized (non-Cartesian) coordinates
- Use of Cartesian coordinates and Lagrange multipliers:
 Non-linear constraint equations
- Analytical solution (SETTLE, M-SHAKE) J. Comput. Chem. 22 (2001) 501
- Matrix methods (LINCS)
- Iterative methods (SHAKE)

J. Comput. Phys. 23 (1977) 327

Constrained versus unconstrained ensemble averages:

- General case
- Tri-atomic molecule
- Bond and bond-angle constraints

Constraints in MD simulation

Goal:

save computer time,

approximation of quantum degrees of freedom

Integration time step:
$$\Delta t \ll v_{max}^{-1}$$
 (of system)

Four conditions for application of constraints:

- **1. Frequencies** of frozen degrees of freedom **>> rest** of frequencies
- 2. Frozen degrees of freedom weakly coupled to remaining ones
- 3. Metric tensor effects play a minor role
- Property of interest independent of degrees of freedom that are to be frozen

Examples:

- Bond-lengths (no constraints: time step $\Delta t = 0.0005$ ps)
 - to H-atoms (factor 2 speed-up)
 - to all atoms (factor 3 speed-up)
- Bond-lengths + bond-angles (artefacts, entropy loss)

Methods:

A. Generalized coordinates: rigid molecules

(flexible molecules: impractical)

B. Cartesian coordinates: flexible, holonomic

- 1. Matrix method + variations matrix inversion
- 2. SHAKE + variations iterative, **efficient**

Nomenclature:

Holonomic	$\sigma_{k}(\vec{r}_{1}\vec{r}_{n},t) = 0$	Rheonomous: σ_k functions of t
Non-holonomic	> 0	Scleronomous: independent of

 $(\Delta t = 0.001 \text{ ps})$

 $(\Delta t = 0.002 \text{ ps})$

Constraints in molecular simulation

Why constraints, consequences
 Techniques to impose constraints
 Enhanced efficiency
 Metric tensor effects
 Physical effects

Classical dynamical equations of motion

Use of generalized versus Cartesian coordinates

Cartesian Coordinates: x_i i=1,2,...,N_{df}

Equations of motion (Newton):

$$m_{i} \frac{d^{2}x_{i}}{dt^{2}} = -\frac{\partial V(x_{1}, x_{2}, \dots, x_{N_{df}})}{\partial x_{i}} \qquad i=1,2,\dots,N_{df}$$

Generalized coordinates: θ_i i=1,2,...,N_{df}

Example: torsional angles θ_iPolymer:bondsbond-anglesconstrained

Equations of motion (Lagrange):

$$\begin{split} \sum_{j=1}^{N_{df}} a_{ij} \frac{d^2 \theta_j}{dt^2} &= -\frac{\partial V(\theta_1, \theta_2, \dots, \theta_{N_{df}})}{\partial \theta_i} - \\ & \sum_{j=1}^{N_{df}} b_{ij} \left(\frac{d \theta_j}{dt}\right)^2 - \sum_{j=1}^{N_{df}} \sum_{k=1}^{N_{df}} c_{ijk} \left(\frac{d \theta_j}{dt}\right) \left(\frac{d \theta_k}{dt}\right) \end{split}$$

i=1,2,...,N_{df}

Coefficients a_{ij}, b_{ij}, c_{ijk} depend on

- atomic masses
- topology of polymer

Note: very inefficient (compared to Cartesian coordinates)

- additional summations (over j and k) \Rightarrow coupled equations
- additional non-linear terms (velocities)

U. Stocker et al., Mol. Sim. 29 (2003) 123-138

Application of constraints using Lagrange multipliers

Distance constraints:

$$\sigma_k(\vec{r}) \equiv r_{k_1k_2}^2 - d_{k_1k_2}^2 = 0$$
 $k=1,2,...,N_c$

Lagrangian multipliers:

(Add a zero term to the potential energy in Newton's equations)

$$m_{i} \frac{d^{2}\vec{r}_{i}(t)}{dt^{2}} = -\frac{\partial}{\partial\vec{r}_{i}} \left[V(\vec{r}) + \sum_{k=1}^{N_{c}} I_{k}(t)\sigma_{k}(\vec{r}) \right]$$

$$= 0$$

$$= \vec{f}_{i}^{uc}(t) + \vec{f}_{i}^{c}(t)$$

$$= -2\sum_{k=1}^{N_{c}} I_{k}(t) \left[\delta_{ik_{1}} - \delta_{ik_{2}} \right] \vec{r}_{k_{1}k_{2}}(t)$$
Unconstrained forces
Constraint forces

J.P. Ryckaert et al., J. Comput. Phys., 23 (1977) 327-341

t

Leap-frog time-integration scheme:

$$\begin{split} \vec{r}_{i}^{uc}(t + \Delta t) &= \vec{r}_{i}(t) + \vec{v}_{i}(t + \Delta t / 2)\Delta t + m_{i}^{-1}\vec{f}_{i}^{uc}(t)(\Delta t)^{2} \\ \vec{r}_{i}(t + \Delta t) &= \vec{r}_{i}^{uc}(t + \Delta t) + m_{i}^{-1}\vec{f}_{i}^{c}(t)(\Delta t)^{2} \\ \downarrow \text{ must satisfy constraint: } \sigma_{k} &= 0 \\ \left[\vec{r}_{k_{1}}^{uc}(t + \Delta t) + m_{k_{1}}^{-1}\vec{f}_{k_{1}}^{c}(t)(\Delta t)^{2} - \vec{r}_{k_{2}}^{uc}(t + \Delta t) - m_{k_{2}}^{-1}\vec{f}_{k_{2}}^{c}(t)(\Delta t)^{2}\right]^{2} - d_{k_{1}k_{2}}^{2} = 0 \\ \downarrow \text{ quadratic equations in } I_{k}(t) \\ \left[\vec{r}_{k_{1}k_{2}}^{uc}(t + \Delta t) - 2I_{k}(t)\left[m_{k_{1}}^{-1} + m_{k_{2}}^{-1}\right]\vec{r}_{k_{1}k_{2}}(t)(\Delta t)^{2}\right]^{2} - d_{k_{1}k_{2}}^{2} = 0 \\ \downarrow \text{ solve : } \begin{cases} \text{ analytical } matrix \\ \text{ iterative (SHAKE)} \end{cases}$$

Position corrections due to constraints (SHAKE):

$$\begin{split} \Delta \vec{r}_{k_1}^{uc}(t + \Delta t) &= -2(\Delta t)^2 m_{k_1}^{-1} l_k(t) \vec{r}_{k_1 k_2}(t) \\ &= m_{k_1}^{-1} g_k(t) \vec{r}_{k_1 k_2}(t) \end{split}$$

J.P. Ryckaert et al., J. Comput. Phys., 23 (1977) 327-341

Positional corrections induced by SHAKE

Constrained positions:

SHAKE
$$(\vec{r}^{\circ}, \vec{r'}, \vec{r})$$

reference initial SHAKEN=constrained

Constrained velocities:

Leap-frog:
$$\vec{r}_i(t + \Delta t) = \vec{r}_i(t) + \vec{v}_i(t + \Delta t / 2)\Delta t$$

Invert:
 $\vec{v}_i(t) = \frac{\left\{\vec{r}_i(t + \Delta t) - \vec{r}_i(t)\right\}}{\Delta t}$

Where
$$\vec{r}_i(t + \Delta t)$$

 $\vec{r}_i(t)$ have been shaken \longrightarrow satisfy the constraints

Constrained forces:

Likewise form: $\vec{r}_i(t + \Delta t) = \vec{r}_i^{uc}(t + \Delta t) + m_i^{-1}\vec{f}_i^{c}(t)(\Delta t)^2$ So **constrain***t* force: $\vec{f}_{i}^{c}(t) = \frac{\left\{\vec{r}_{i}(t + \Delta t) - \vec{r}_{i}^{uc}(t + \Delta t)\right\}m_{i}}{(\Delta t)^{2}}$ And **constrain**ed force: $\vec{\mathbf{f}}_{i}(t) = \vec{\mathbf{f}}_{i}^{uc}(t) + \vec{\mathbf{f}}_{i}^{c}(t)$ = component along the constraint is equal to that at the other end of the constraint

Constraints in molecular simulation

Why constraints, consequences
 Techniques to impose constraints
 Enhanced efficiency
 Metric tensor effects
 Physical effects

COMPARISON OF MD ALGORITHMS

with harmonic bond forces

W.F.van Gunsteren/Santiago de Chile 271117/31

van Gunsteren & Berendsen, Mol. Phys. 34 (1977) 1311 - 1327

Constraints in molecular simulation

1. Why constraints, consequences 2. Techniques to impose constraints **3. Enhanced efficiency** 4. Metric tensor effects **5. Physical effects** 6. Work done by constraint forces 7. Use of constraints to calculate a free energy profile

METRIC TENSOR EFFECT

Volume element dpdq is invariant under canonical transformation

van Gunsteren, Mol. Phys. 40 (1980) 1015 - 1019

Consider two cases

1. Flexible model:

Hard variables \vec{q}^{β} are harmonic with infinitely high force constant $V(\vec{q}) = V_{soft}(\vec{q}_{\alpha}, \vec{q}_{\beta} \approx \vec{b}) + V_{hard}(\vec{q}_{\beta})$ $V_{hard}(\vec{q}_{\beta}) = \frac{1}{2}(\vec{q}_{\beta} - \vec{b})^{\tau} \underline{F}(\vec{q}_{\beta} - \vec{b})$

 $\begin{array}{l} \underline{F} \quad \mbox{matrix of harmonic force constants} \\ \mbox{Integrate over hard variables:} \quad \vec{q}^{\,\beta}\vec{p}^{\,\beta} \\ \mbox{and over:} \quad \vec{p}^{\,\alpha} \end{array} \right\} < A > = \int ...d\vec{q}^{\,\alpha} \\ <A > = \frac{\int A \left|\underline{G}\right|^{1/2} e^{-V(\vec{q}^{\,\alpha})/k_{B}T} d\vec{q}^{\,\alpha}}{\int \left|\underline{G}\right|^{1/2} e^{-V(\vec{q}^{\,\alpha})/k_{B}T} d\vec{q}^{\,\alpha}} \end{array}$

2. Rigid model:

 $\begin{array}{ll} \mbox{Remove hard variables} & \vec{q}^{\,\beta} \mbox{and} & \vec{p}^{\,\beta} \mbox{ from Hamiltonian} \\ \mbox{Integrate over:} & \vec{p}^{\,\alpha} \\ \end{array} \Big\} < A > = \int ... d\vec{q}^{\,\alpha} \end{array}$

$$<\!A>\!=\!\frac{\int\!A\!\left|\underline{G}^{\alpha}\right|^{\!1/2}e^{-V(\vec{q}^{\alpha})/k_{B}T}d\vec{q}^{\alpha}}{\int\!\left|\underline{G}^{\alpha}\right|^{\!1/2}e^{-V(\vec{q}^{\alpha})/k_{B}T}d\vec{q}^{\alpha}}$$

Flexible model

Determine conjugate momenta p:

Kinetic energy:
$$K = \frac{1}{2} \sum_{k=1}^{3N} m_k \dot{x}_k^2 = \frac{1}{2} \dot{\vec{q}}^{\tau} \underline{G} \dot{\vec{q}}$$
 with $G_{ij} = \sum_{k=1}^{3N} m_k \frac{\partial x_k}{\partial q_i} \frac{\partial x_k}{\partial q_j}$

Conjugate momenta

$$\frac{\partial q_{ij}}{\partial k} = \sum_{k=1}^{m_k} \partial q_i \partial q_j$$
(mass-metric tensor)

$$\vec{p} = \frac{\partial K}{\partial \vec{q}} = \vec{G} \cdot \vec{q} \Rightarrow K = \frac{1}{2} \vec{p}^{\tau} \vec{G}^{-1} \vec{p}$$

Integration over \vec{p}

$$\int e^{-\frac{1}{2}\vec{p}^{\tau}\underline{G}^{-1}\vec{p}/k_{B}T} d\vec{p} = (2\pi k_{B}T)^{3N/2} \left|\underline{G}\right|^{1/2}$$

Integration over \vec{q}^{β}

$$\int e^{-\frac{1}{2}(\vec{q}^{\beta}-\vec{b})^{\tau}} \underline{F}(\vec{q}^{\beta}-\vec{b})/k_{B}T} d\vec{q}^{\beta} = (2\pi k_{B}T)^{3N/2} \left|\underline{F}\right|^{-1/2}$$

Equilibrium average of A

$$<\!A\!>=\!\frac{\int\!A\!\left|\underline{G}\right|^{1/2}\left|\underline{F}\right|^{-1/2}e^{-V(\vec{q}^{\alpha})/k_{B}T}d\vec{q}^{\alpha}}{\int\!\left|\underline{G}\right|^{1/2}\left|\underline{F}\right|^{-1/2}e^{-V(\vec{q}^{\alpha})/k_{B}T}d\vec{q}^{\alpha}}$$

Good assumption: $|\mathbf{E}|^{^{-1/2}}$ independent of $\vec{q}^{\,\alpha}$, so it drops out W.F.van Gunsteren/Santiago de Chile 271117/35

Rigid model

Example of mass-metric tensor effect

Example of mass-metric tensor calculation $m \bigcirc \alpha$ m_{2} Triatomic molecules $q_1^{\beta} = b_1 = \sqrt{x_{13}^2 + y_{13}^2 + z_{13}^2} = r_{13}$ Hard degrees of freedom b_1 , b_2 Soft degree of freedom α $q_2^{\beta} = b_2 = \sqrt{x_{23}^2 + y_{23}^2 + z_{23}^2} = r_{23}$ $q_3^{\alpha} = \cos \alpha = \frac{r_{13}^2 + r_{23}^2 - r_{12}^2}{2r_{13}r_{23}}$ H-matrix $H_{ij}^{\beta} = \sum_{k=1}^{N} m_{k}^{-1} \left\{ \frac{\partial q_{i}^{\beta}}{\partial x_{i}} \frac{\partial q_{j}^{\beta}}{\partial x_{i}} + \frac{\partial q_{i}^{\beta}}{\partial v_{i}} \frac{\partial q_{j}^{\beta}}{\partial v_{i}} + \frac{\partial q_{i}^{\beta}}{\partial z_{i}} \frac{\partial q_{j}^{\beta}}{\partial z_{i}} \right\}$ $\underline{H}^{\beta} = \begin{pmatrix} m_1^{-1} + m_3^{-1} & m_3^{-1} \cos \alpha \\ m_3^{-1} \cos \alpha & m_2^{-1} + m_3^{-1} \end{pmatrix} = \frac{1}{m_3} \begin{pmatrix} \frac{m_1 + m_3}{m_1} & \cos \alpha \\ \cos \alpha & \frac{m_2 + m_3}{m_2} \end{pmatrix}$ $|\underline{H}^{\beta}| = (m_1^{-1} + m_3^{-1})(m_2^{-1} + m_3^{-1}) - m_3^{-2} \cos^2 \alpha = \frac{|\underline{G}^{\alpha}|}{|\underline{G}|} = \frac{\text{rigid}}{\text{flexible}}$ $V' = \frac{1}{2} k_{\rm B} T \ln \left\{ (m_1^{-1} + m_3^{-1})(m_2^{-1} + m_3^{-1}) - m_3^{-2} \cos^2 \alpha \right\}$

For restricted variation of angle α : metric tensor has almost no effect

Constraints in molecular simulation

Why constraints, consequences
 Techniques to impose constraints
 Enhanced efficiency
 Metric tensor effects
 Physical effects

Physical effect of application of constraints

Macromolecules 15 (1982) 1528 - 1544

Atom-positional fluctuations

Protein: Bovine pancreatic trypsin inhibitor (BPTI) MD simulations

Bond-length constraints do **not** affect atomic motions **Bond-angle constraints** do **considerably restrict** the atomic motions (entropy loss)

Physical effect of application of constraints

NC = *no constraints LC* = *bond-length constraints*

Bond-length constraints do not significantly affect the motions of the bond angles or the torsional angles

Macromolecules 15 (1982) 1528 - 1544

On the relative merits of flexible versus rigid models for use in computer simulation of molecular liquids

Ilario Tironi et al., Chem. Phys. Lett. 250 (**1996**) 19-24

Rigid

Flexible

No internal vibrations:	Classical vibrations:
$\hbar\omega = 1000 - 4000 \text{cm}^{-1}$	harmonic distribution
$k_{\rm B}T$ 200cm ⁻¹	
II Technical: computational efficie	ency, elegance
A. Large Δt (4x)	Multiple time step methods (since '90s)
B. Less different frequencies	High↔ low frequency modes
fast relaxation	slow energy exchange
	may lead to different temperatures
	in high versus low frequency modes
Re	emedy: a) Ewald/exact forces
	b) Separate T-scaling (Rot/Trans/Vib)
III Practical: liquid properties bet	ter?
Compare: Model fitted	structural
- to same data	- thermodynamic - PROPERTIES
- in same manner	electric
n Gunsteren/Santiago de Chile 271117/42	

Molecular simulation: algorithms, boundary conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

- 1. Newton: molecular dynamics simulation (MD)
- 2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

- 1. Metropolis Monte Carlo simulation (MC)
- 2. Replica exchange technique (RE)

2. Boundary conditions

- **1. Spatial boundary conditions**
- 2. Thermodynamic boundary conditions
 - temperature
 - pressure
 - other

3. Constraints

- **1. Distance constraints**
- 2. Other constraints
- 4. MD algorithm

Spatial distribution of licences GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: <u>http://www.gromos.net</u>