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Molecular simulation: algorithms, boundary 
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

1. Newton: molecular dynamics simulation (MD)

2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

1. Metropolis Monte Carlo simulation (MC)

2. Replica exchange technique (RE)

2. Boundary conditions

1. Spatial boundary conditions

2. Thermodynamic boundary conditions

- temperature

- pressure

- other

3. Constraints

1. Distance constraints

2. Other constraints

4. MD algorithm
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Definition of a model for a computer simulation

MOLECULAR

MODEL

Degrees of freedom: 

what are the elementary 

entities or “particles” 

Interactions or 

forces between 

“particles”

Boundary conditions

or interface to the 

outside world

Methods to generate 

configurations along

degrees of freedom

e.g. 
temperature

pressure
walls

external forces

For any system four choices have to be made

Interaction =
physico-chemical-

biological
knowledge

e.g. equations of motion
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Molecular simulation: algorithms, boundary 
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

1. Newton: molecular dynamics simulation (MD)

2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach
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2. Replica exchange technique (RE)
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2. Thermodynamic boundary conditions

- temperature
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3. Constraints
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2. Other constraints

4. MD algorithm
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TREATMENT OF SPATIAL BOUNDARIES

Number of atoms N in system << Navogadro = 1023

1. No wall: in vacuo

distortive effects:

- surface tension will reduce surface area

-> makes molecules more spherical:

DNA, insulin: deformed

myoglobin, cytochrome: less deformed

partial remedy: use solvent to make system spherical

use solvation area force

- dielectric permittivity of vacuum = 1

charge – charge interactions in vacuum are larger than in polar 

solvent : ε > 1; water: ε = 80

partial remedy: reduce charges or ε
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DISTORTIVE EFFECT OF VACUUM BOUNDARY CONDITIONS

e.g. hen-egg-white lysozyme (protein, 129 residues)

X-ray structure after 1ns, vacuum     after 1ns, explicit svt (PBC)

deviation from

X-ray structure

radius of 

gyration

solvent-accessible

surface area

vacuum

explicit svt

explicit svt

vacuum

vacuum

 larger deviations

from experiment

 too compact shape

 more spherical shape,

reduced surface area

 + too stable salt bridges

+ too stable H-bonds

+ slower dynamics

explicit svt

L.J. Smith et al., Biochemistry 34 (1995) 3014 - 3021
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• Simulating a molecule in vacuum:

• Tends to get stuck in a single conformation

– Surface tension leads to globular molecules

– No collisions and interactions with solvent molecules

– No dielectric screening:

electrostatic interactions are not reduced by solvent

NH
2

N

OH

O

H

O

NH
2

N

O

H

OH

O

dialanine

Simulation in vacuum

80 for water
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GROMOS force field: not vacuum

What to do when using it for in vacuo simulations?

solution parameters (37C4): vacuo parameters(37D4):

GROMOS: 43A1 (45A4, 53A6) 43B1 (45B4, 53B6)

neutralise charged groups

retaining H-bond capacity

Lys:

Asp:

Glu:

Arg, N-terminus, C-terminus: likewise
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• Surface effects (surface tension)

• No dielectric screening

• Surrounding is a continuum with 
dielectric constant ε > 1

• Different ε within and outside the 
solute: solving Poisson-Boltzmann 
equation

• Nonpolar interaction proportional to 
solvent accessible surface area

• Change of the equations of motion

• Additional frictional coefficient 
represents viscosity of solvent

• Random (stochastic) force represents 
collision with solvent

Vacuum

Implicit solvation

Stochastic dynamics

Implicit solvation models I
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• Take the solvent into account in a mean-field manner:

- average dielectric screening and solvation captured

- no structure in the solvent

- no explicit interactions (hydrogen bonds) with the solute

- still distortive boundary effects

• In general:

– short range interactions are really bad

– long range interactions may be reasonably described

– depends strongly on the parameters of the model

• surface tension of an apolar solute: 

solvent-accessible-surface-area (SASA) proportionality term

• choice of dielectric permittivity ε in the protein

Implicit solvent models II

Advice: Do avoid implicit solvation models

J.R. Allison et al., J. Phys. Chem. B 115 (2011) 4547 - 4557
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2. extended wall region: buffer region

restrict motion of atoms in layer adjacent to the vacuum to 

inhibit distortion

- (harmonic) position restraining

- mean force from outside (vacuo)

- stochastic force from outside

3. periodic: infinite periodic system

- cube, rectangle

- dodecahedron

- truncated octahedron

distortive effect: anisotropy -> cube-corner effect

more
spherical

MD

restrict motion

vacuum

DISTORTIVE EFFECT OF VACUUM BOUNDARY CONDITIONS
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PERIODIC BOUNDARY CONDITIONS: avoiding surface effects 

 The simulated system (solute + solvent) 

consists of particles within a reference

computational box of space-filling 

shape (e.g. cube)

 At each simulation step, particles exiting 

the box through one face are translated 

so that they reenter the box through the 

opposing face

 This procedure mimics a system 

consisting of an infinite lattice of 

periodic copies of the reference box

(no interface to vacuum !)

 Only the coordinates of particles in the central

box are actually stored in the computer

reference 

box
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Periodic boundary conditions
Space filling box shapes

Rcut

Lbox

or a

cubic periodic truncated octahedron
periodic

Preferred over extended wall boundary conditions
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Spatial periodic boundary conditions:

Periodic boundary conditions:

Calculation of force on particle i due to particle j or one of 

its periodic images j‘, j‘‘, j‘‘‘

Condition: 2 Rcut < Lbox

In order to avoid interaction between periodic images 

Rcuti

j'''

j

j''

j'
Lbox
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For a solute of radius Rsol we have

Additional condition: 2 Rsol + Rcut < Lbox

Upon violation of this condition:

Aggregation of periodic images

Rcut

Rsol

Rsol

Lbox
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Molecular simulation: algorithms, boundary 
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

1. Newton: molecular dynamics simulation (MD)

2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

1. Metropolis Monte Carlo simulation (MC)

2. Replica exchange technique (RE)

2. Boundary conditions

1. Spatial boundary conditions

2. Thermodynamic boundary conditions

- temperature

- pressure

- other

3. Constraints

1. Distance constraints

2. Other constraints

4. MD algorithm
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Constraints in molecular simulation

1. Why constraints, consequences

2. Techniques to impose constraints

3. Enhanced efficiency

4. Metric tensor effects

5. Physical effects
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Constrained ensembles

Why use constraints?

• elimination of highest frequency motions

→ often uninteresting

→ maybe unphysical

→ limit time step ∆t

• biasing of the sampling

→ towards phase space region of interest

Consequence:

• modifies ensemble averages when using non-Cartesian 

coordinates:

→ mass-metric tensor effect



W.F.van Gunsteren/Santiago de Chile 271117/20

Methods to impose constraints:

• Use of generalized (non-Cartesian) coordinates

• Use of Cartesian coordinates and Lagrange multipliers:

Non-linear constraint equations

• Analytical solution (SETTLE, M-SHAKE)

• Matrix methods (LINCS)

• Iterative methods (SHAKE)

Constrained versus unconstrained ensemble averages:

• General case

• Tri-atomic molecule

• Bond and bond-angle constraints

J. Comput. Phys. 23 (1977) 327

J. Comput. Chem. 22 (2001) 501
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Goal:

save computer time, 

approximation of quantum degrees of freedom

Integration time step: Δt << (of system)

Four conditions for application of constraints:

1. Frequencies of frozen degrees of freedom >> rest of frequencies

2. Frozen degrees of freedom weakly coupled to remaining ones

3. Metric tensor effects play a minor role

4. Property of interest independent of degrees of freedom that are 

to be frozen

Constraints in MD simulation

1
max


van Gunsteren & Berendsen, Mol. Phys. 34 (1977) 1311 - 1327
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Examples:

• Bond-lengths (no constraints: time step Δt= 0.0005 ps)

- to H-atoms (factor 2 speed-up)                                       (Δt= 0.001 ps)

- to all atoms (factor 3 speed-up)                                      (Δt= 0.002 ps)

• Bond-lengths + bond-angles (artefacts, entropy loss)

Methods:

A. Generalized coordinates: rigid molecules

(flexible molecules: impractical)

B. Cartesian coordinates: flexible, holonomic

1. Matrix method + variations matrix inversion

2. SHAKE + variations iterative, efficient

Nomenclature:

1 nk(r ...r , t) 0Holonomic Rheonomous: σk functions of t

Non-holonomic > 0 Scleronomous: independent of t

van Gunsteren & Berendsen, Mol. Phys. 34 (1977) 1311 - 1327
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Constraints in molecular simulation

1. Why constraints, consequences

2. Techniques to impose constraints

3. Enhanced efficiency

4. Metric tensor effects

5. Physical effects
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Use of generalized versus Cartesian coordinates

Cartesian Coordinates: xi i=1,2,…,Ndf

Equations of motion (Newton): 

Generalized coordinates: θi i=1,2,…,Ndf

Example: torsional angles θi

Polymer: bonds

bond-angles

Classical dynamical equations of motion

df1 2 N
2

f
i

i 2

i
d

x ,x ,..., xx

x

V( )d
m                 i=1,2,...,N

dt


 



 constrained
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Equations of motion (Lagrange):

Coefficients aij, bij, cijk depend on

- atomic masses

- topology of polymer

Note: very inefficient (compared to Cartesian coordinates)

- additional summations (over j and k)  coupled equations

- additional non-linear terms (velocities)

df

df df d

df

f

1 2 N

j j

N

j 1

N N

2
j

ij 2
i

2

ij ijk

df

N

j 1 j 1 k 1

k

V( , ,..., )d
a

dt

d d d
b c

dt d
    

                                       

t dt

 

                 

      i=1,2,...,N

   

  

  

  

 







  


 



     
        

    



 

U. Stocker et al., Mol. Sim. 29 (2003) 123-138  
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Distance constraints:

Lagrangian multipliers:

(Add a zero term to the potential energy in Newton's equations)

Application of constraints using Lagrange 
multipliers

   
1 2 1 2

2 2
k k k k k c(r) r d 0            k=1,2,....,N




 
   
   

 


cN2

i
i k2

i k 1

uc
i

k

c
i

d r (t)
m V(r) (rl )

rdt

f

(t

( ft)

)

(t)



   
 

c

1 21 2

N

k kk ik ik

k 1

2 l (t) r (t) 

=0

Lagrange multipliers depending on t

Unconstrained forces
Constraint forces

J.P. Ryckaert et al., J. Comput. Phys., 23 (1977) 327-341  
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Leap-frog time-integration scheme:

Position corrections due to constraints (SHAKE):

1 21 2 1 21 2

uc uc1 2
i i i ii

uc
i i

2
uc uc2 2
k k k

c1 2
ii

c c1 1 2
k kk k

k

k

 must satisfy constraint:  

r (t t) r (t) v (t t /2) t m f (t)

m f (t)(

( t)

r t)

m f (t)( t) m f (t)( t

(t t) r (

0

t t)

r (t t) r (t t) d 0)







 

        

     

 
        

















1 2 1 21 2 1 2

2
uc 1

k

k
1 2 2

k k k kk k k k cr (t t) 2 m m

 

r (t

l (t)

)( t) d 0                  k

quadratic equations

=1,2,..

 in 

Nl .,(t)          
   









analytical

solve : matrix

iterative (SHAKE)





     



1 1 21

1 21

k

uc 2 1
k k kk

1
k kk k

l (t)

g (t)

r (t t) 2( t) m r (t)

m r (t)

J.P. Ryckaert et al., J. Comput. Phys., 23 (1977) 327-341  
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Positional corrections induced by SHAKE

unconstrained step

dk1k2

dk1k2

1kr

1

uc
kr

2

uc
kr

 
1 1 2

1

uc k
k k k

k

g
r r

m
  

2 1 2

2

uc k
k k k

k

g
r r

m

dk1k2
1kr

2kr

distance > dk1k2
unconstrained step
too large → SHAKE fails

SHAKE failure means
too big (wrong) forces:

An error in the topology
or MD input

2

uc
kr

1

uc
kr


1 2 1 2

uc
k k k kr  along r

2kr
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Constrained positions:

SHAKE 

Constrained velocities:

Leap-frog:

Invert:

Where

 r , r ', r

      i iir (t t) r (t) (t t / 2)v t

   




i

i

i

v
r (t t) r (t)

(t)
t

reference     initial     SHAKEN=constrained

  



i

i

r (t t)
 have been shaken

r (t)

Constrained forces:

Likewise form:

So constraint force:

And constrained force:

= component along the constraint is equal to 

that at the other end of the constraint

      
uc 1 2

i i

c
iir (t t) r (t t) m (f t) t)(

     




uc
i i i

2

c
i

r (t t) r

f (t)

(t t) m

( t)
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i
c

i if (t f (t f)) (t)
1 2k kd

1

uc
kf

1

c
kf

1kf
2

uc
kf

2

c
kf

2kf

satisfy the constraints
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Constraints in molecular simulation

1. Why constraints, consequences

2. Techniques to impose constraints

3. Enhanced efficiency

4. Metric tensor effects

5. Physical effects
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COMPARISON OF MD ALGORITHMS

Complex system: trypsin inhibitor (BPTI) ≈ 500 atoms

Effect of constraints: bond forces: harmonic  Gear better

other forces: noisy  Verlet better

102

101

1

10-1

10-2

10-15 10-14

Δt (sec)

ΔEkin

with bond constraints

102

101

1

10-3

10-4

10-16 10-15

Δt (sec)

with harmonic bond forces

10-2

10-1

103

ΔEkin

van Gunsteren & Berendsen, Mol. Phys. 34 (1977) 1311 - 1327

Fluctuation total energy, ΔEtot (kJ/mol)
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Constraints in molecular simulation

1. Why constraints, consequences

2. Techniques to impose constraints

3. Enhanced efficiency

4. Metric tensor effects

5. Physical effects

6. Work done by constraint forces

7. Use of constraints to calculate a free energy     

profile
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METRIC TENSOR EFFECT

Definitions:

N atoms 3N  Cartesian coordinates 

conjugated momenta

Hamiltonian

Equilibrium average of observable A:

Transform to generalised coordinates (q,p)

Kh hard coordinates (e.g. bond-lengths)

3N-Kh soft coordinates (e.g. rest)

conjugated momenta 

Equilibrium average of A:

Volume element dpdq is invariant under canonical transformation 

q

x
Kp

x




x xH(p , x) K(p ) V(x) 

x B

x B

H(p ,x) / k T

x

H(p ,x) / k T

x

Ae dp dx
A

e dp dx




 





q

p , p 

B

B

H(p,q) / k T

H(p,q) / k T

Ae dpdq
A

e dpdq




 





x

van Gunsteren, Mol. Phys. 40 (1980) 1015 - 1019
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Consider two cases

1. Flexible model:

Hard variables      are harmonic with infinitely high force constant

matrix of harmonic force constants

Integrate over hard variables: 

and over: 

2. Rigid model:

Remove hard variables     and      from Hamiltonian 

Integrate over:

q

q p

soft hardV(q) V (q ,q b) V (q )    
1

hard 2
V (q ) (q b) F(q b)

    

F

B

B

1/ 2 V(q ) / k T

1/ 2 V(q ) / k T

A G e dq
A

G e dq





 

 
 





q p
A ...dq

p

 






 




B

B

1/ 2
V(q ) / k T

1/ 2
V(q ) / k T

A G e dq
A

G e dq





 

 
 





p A ...dq   
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Flexible model

Determine conjugate momenta p:

Kinetic energy: with 

Conjugate momenta (mass-metric tensor)

Integration over 

Integration over  

Equilibrium average of A

Good assumption:          independent of       , so it drops out

3N
2

k k

k 1

1 1
K m x q Gq

2 2





 
3N

k k
ij k

k 1 i j

x x
G m

q q

 


 


p

11
2

Kp Gq K p G p
q

    


11
B2

1/ 2p G p/ k T 3N / 2

Be dp (2 k T) G
 

 
1

B2
1/ 2(q b) F(q b) / k T 3N / 2

Be dq (2 k T) F
        

B

B

1/ 2 1/ 2 V(q ) / k T

1/ 2 1/ 2 V(q ) / k T

A G F e dq
A

G F e dq





  

  
 




1/2

F


q

q
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Rigid model

Kinetic energy: with 

Conjugate momenta 

Integration over 

Equilibrium average of A

Calculation of mass-metric tensors

too difficult, but                                        can be evaluated

Fixman’s theorem: 

Correction potential energy term                             

= free energy due to entropy

K q G q
   

3N
k k

ij k

k 1 i j

x x
G m

q q



 


 


 


p

1
1
2

Kp G q K p G p
q

 
      


   



1
1

B2 h
1/ 2p G p / k T (3N K )/ 2

Be dp (2 k T) G
      

B

B

1/ 2
V(q ) / k T

1/ 2
V(q ) / k T

A G e dq
A

G e dq





 

 
 





G

G





3N
j1 i

ij k

k 1 k k

qq
H m

x x


 






 


G G H 

1
B2

V ' k T ln H
1

B2
k ln H
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Example of mass-metric tensor effect

n-butane 

Hard degrees of freedom (5): bonds b

angles θ

Soft degree of freedom (1): torsion φ

cn = complicated functions of θ

crosses: f-distribution (from SD)

without V’ term

(not flat)

squares: f-distribution (from SD)

with V’ term

(flat)

b





b
b










1
B2

V '( ) k T ln H 
4

n

n

n 0

H c f ( )





   
1/ 2

1 1
2 2

f ( ) cos cos (1 cos )cos       

Mol. Phys. 40 (1980) 1015 - 1019

=
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Example of mass-metric tensor calculation

Triatomic molecules 

Hard degrees of freedom b1, b2

Soft degree of freedom  α

H-matrix

For restricted  variation of angle α:  metric tensor has almost no effect

1m 2m

3m

1b 2b



2 2 2

1 1 13 13 13 13

2 2 2

2 2 23 23 23 23

2 2 2

13 23 12
3

13 23

q b x y z r

q b x y z r

r r r
q cos

2r r







    

    

 
  

N
j j j1 i i i

ij k

k 1 k k k k k k

q q qq q q
H m

x x y y z z

    
 



      
   

       


1 3

1

2 3

2

m m
1 1 1

m1 3 3

1 1 1 m m
33 2 3 m

cosm m m cos 1
H

mm cos m m cos


  



   

   
   
      

1 1 1 1 2 2

1 3 2 3 3

G rigid
H (m m )(m m ) m cos

G flexible



           

 1 1 1 1 2 21
B 1 3 2 3 32

V ' k T ln (m m )(m m ) m cos        
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Constraints in molecular simulation

1. Why constraints, consequences

2. Techniques to impose constraints

3. Enhanced efficiency

4. Metric tensor effects

5. Physical effects
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Physical effect of application of constraints

Atom-positional fluctuations

Protein: Bovine pancreatic trypsin inhibitor (BPTI)  MD simulations

Bond-length constraints do not affect atomic motions
Bond-angle constraints do considerably restrict the atomic motions (entropy loss)

Macromolecules 15 (1982) 1528 - 1544
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Physical effect of application of constraints

Angular motion

Protein: BPTI MD simulations

Bond-length constraints
do not significantly affect 
the motions of 
the bond angles or 
the torsional angles

NC = no constraints
LC = bond-length constraints

Macromolecules 15 (1982) 1528 - 1544
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On the relative merits of flexible versus rigid models for use 
in computer simulation of molecular liquids

Ilario Tironi et al., Chem. Phys. Lett. 250 (1996) 19-24

Rigid Flexible

Arguments:

I Principle: approximation of quantum mechanics 

No internal vibrations: Classical vibrations:

harmonic distribution

II Technical: computational efficiency, elegance

A. Large Δt (4x) Multiple time step methods (since ’90s)

B. Less different frequencies High↔ low frequency modes

fast relaxation slow energy exchange

may lead to different temperatures

in high versus low frequency modes

Remedy: a) Ewald/exact forces

b) Separate T-scaling (Rot/Trans/Vib)

III Practical: liquid properties better?

Compare: Model fitted structural

- to same data thermodynamic PROPERTIES

- in same manner electric 

1

1
B

1000 4000cm

k T 200cm
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Molecular simulation: algorithms, boundary 
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion

1. Newton: molecular dynamics simulation (MD)

2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach

1. Metropolis Monte Carlo simulation (MC)

2. Replica exchange technique (RE)

2. Boundary conditions

1. Spatial boundary conditions

2. Thermodynamic boundary conditions

- temperature

- pressure

- other

3. Constraints

1. Distance constraints

2. Other constraints

4. MD algorithm
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Spatial distribution of licences 

GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: http://www.gromos.net


