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Molecular simulation: algorithms, boundary
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion
1. Newton: molecular dynamics simulation (MD)
2. Langevin: stochastic dynamics simulation (SD)
b. Monte Carlo type approach
1. Metropolis Monte Carlo simulation (MC)
2. Replica exchange technique (RE)

2. Boundary conditions
1. Spatial boundary conditions
2. Thermodynamic boundary conditions
- temperature
- pressure
- other

3. Constraints
1. Distance constraints
2. Other constraints

4. MD algorithm
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Definition of a model for a computer simulation

For any system four choices have to be made

Interactions or
forces between
“particles”
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Interaction =
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biological
knowledge

°

® 0%

Degrees of freedom:
what are the elementary
entities or “particles”
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. or interface to the
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Methods to generate
configurations along
degrees of freedom
e.g. equations of motion

W.F.van Gunsteren/Santiago de Chile 271117/3

e.g.
temperature

® & @ pressure

@ N walls

® 0 g ®¢ external forces




Definition of a model for a computer simulation

For any system four choices have to be made

Interactions or
forces between
“particles”

NN
@~

Interaction =
physico-chemical-
biological
knowledge

°

® 0%

Degrees of freedom:
what are the elementary
entities or “particles”

Boundary conditions

or interface to the
jv outside world

‘ MOLECULAR
MODEL

L

Methods to generate
configurations along
degrees of freedom
e.g. equations of motion

W.F.van Gunsteren/Santiago de Chile 271117/4

e.g.
temperature

® & @ pressure

@ N walls

® 0 g ®¢ external forces




Molecular simulation: algorithms, boundary
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion
1. Newton: molecular dynamics simulation (MD)
2. Langevin: stochastic dynamics simulation (SD)
b. Monte Carlo type approach
1. Metropolis Monte Carlo simulation (MC)
2. Replica exchange technique (RE)
2. Boundary conditions
1. Spatial boundary conditions
2. Thermodynamic boundary conditions
- temperature
- pressure
- other
3. Constraints
1. Distance constraints
2. Other constraints

4. MD algorithm
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TREATMENT OF SPATIAL BOUNDARIES

Number of atoms N in system << N,,0gaqr0 = 1023

1. No wall: in vacuo
distortive effects:
- surface tension will reduce surface area
-> makes molecules more spherical:

DNA, insulin: deformed

myoglobin, cytochrome: less deformed
partial remedy: use solvent to make system spherical
use solvation area force
- dielectric permittivity of vacuum = 1

charge - charge interactions in vacuum are larger than in polar

solvent : € > 1; water: € = 80

partial remedy: reduce charges or €
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DISTORTIVE EFFECT OF VACUUM BOUNDARY CONDITIONS
e.g. hen-egg-white lysozyme (protein, 129 residues)

X-ray structure

deviation from
X-ray structure

radius of
gyration

solvent-accessible
surface area

solvent accessible surface area
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= larger deviations
from experiment

= t00 compact shape

= more spherical shape,
reduced surface area

= + too stable salt bridges
+ too stable H-bonds
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Simulation in vacuum
e Simulating a molecule in vacuum:

‘t‘HO
i N, O
N
O
dialanine O

e Tends to get stuck in a single conformation
— Surface tension leads to globular molecules
— No collisions and interactions with solvent molecules
— No dielectric screening:
electrostatic interactions are not reduced by solvent
pe L 44,
dne € 1,

1

80 for water
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Adaptation of a force field to a vacuum
boundary condition

GROMOS force field: not vacuum
What to do when using it for in vacuo simulations?

solution parameters (37C4): vacuo parameters(37D4):
GROMOS: 43A1 (45A4, 53A6) 43B1 (45B4, 53B6)

neutralise charged groups
retaining H-bond capacity

Lys: Ci/zz(N)=1500[kca|/mol,3\12]1/2 CY2(N)=950
248 e 248
H H
127 .129 .~ 248 ¢ 0 _-.744 ~ .248
C-==NT—H C——NT—H_ .
C/Z(N of peptide)= 950 N .248 e \H '
H of peptide)=+.28e _
q( pep ) O'-635 - o 36
Asp: +.27 ~ e
: C _
Glu: \o"635 \o .36
Ci?(0) = 900/1500 CI?(0) = 550/550

+.38 -.38 e
cC=—=0O

C!?(O of carbonyl) = 550
Arg, N-terminus, C-terminus: likewise
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W.F.van

Implicit solvation models I

Vacuum o
C '
Implicit solvation o

Stochastic dynamics e

‘e :
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Surface effects (surface tension)
No dielectric screening

Surrounding is a continuum with
dielectric constant e > 1

Different € within and outside the
solute: solving Poisson-Boltzmann
equation

Nonpolar interaction proportional to
solvent accessible surface area

Change of the equations of motion

Additional frictional coefficient
represents viscosity of solvent

Random (stochastic) force represents
collision with solvent

RO =~ 22— Lp(0)+F,, (1



Implicit solvent models 11

Take the solvent into account in a mean-field manner:

- average dielectric screening and solvation captured
- no structure in the solvent

- no explicit interactions (hydrogen bonds) with the solute
- still distortive boundary effects

e In general:
- short range interactions are really bad

- long range interactions may be reasonably described

— depends strongly on the parameters of the model
e surface tension of an apolar solute:

solvent-accessible-surface-area (SASA) proportionality term
e choice of dielectric permittivity € in the protein

Advice: Do avoid implicit solvation models

W.Fvan Gunsteren/Santiago de Chile 271117/11 J.R. Allison et al., J. Phys. Chem. B 115 (2011) 4547 - 4557



DISTORTIVE EFFECT OF VACUUM BOUNDARY CONDITIONS
2. extended wall region: buffer region

restrict motion of atoms in layer adjacent to the vacuum to
inhibit distortion

//’ vacuum
- (harmonic) position restraining ‘@

- mean force from outside (vacuo) '/
- stochastic force from outside /

restrict motion

3. periodic: infinite periodic system
- cube, rectangle

- dodecahedron
- truncated octahedron

D¢
D¢
D¢

more
spherical ®

D¢
D¢
D¢

distortive effect: anisotropy -> cube-corner effect

D¢
D¢
D¢
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PERIODIC BOUNDARY CONDITIONS: avoiding surface effects

e The simulated system (solute + solvent) reference
consists of particles within a reference box

computational box of space-filling \
shape (e.g. cube) o} ot Q. or 2 o+
e i o Yo |\l | oo

e At each simulation step, particles exiting ? g ? g ? S
the box through one face are translated L~
so that they reenter the box through the Q( T Q‘ Q @
opposing face 5‘0 5m \O,o

R R R

e This procedure mimics a system
consisting of an infinite lattice of \oq‘ @ \bq« o \OQ( o
periodic copies of the reference box Pre) O Ppre)
(—=no interface to vacuum !) o 9 o 7 ot

e Only the coordinates of particles in the central
box are actually stored in the computer
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Periodic boundary conditions
Space filling box shapes

cubic periodic truncated octahedron
periodic
(o] (e} (o]
o o (o]

(oo
(0]
|O£W\
o
(o)e]
(0]
(0]
F
-3
(]
X

oo
oo
oo

Preferred over extended wall boundary conditions
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Spatial periodic boundary conditions:

Periodic boundary conditions:

} I'box

Calculation of force on particle i due to particle j or one of
its periodic images j', 3'', 'V

Condition: 2 R_,; < L,

In order to avoid interaction between periodic images
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For a solute of radius R_,, we have

Additional condition: 2 R, + R_; < L,

I-box

Upon violation of this condition:

Aggregation of periodic images
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Molecular simulation: algorithms, boundary
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion
1. Newton: molecular dynamics simulation (MD)
2. Langevin: stochastic dynamics simulation (SD)

b. Monte Carlo type approach
1. Metropolis Monte Carlo simulation (MC)
2. Replica exchange technique (RE)
2. Boundary conditions
1. Spatial boundary conditions
2. Thermodynamic boundary conditions
- temperature
- pressure
- other
3. Constraints
1. Distance constraints
2. Other constraints

4. MD algorithm
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Constraints in molecular simulation

. Why constraints, consequences
. Techniques to impose constraints
. Enhanced efficiency

. Metric tensor effects

gl H W N =

. Physical effects
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Constrained ensembles

Why use constraints?
e elimination of highest frequency motions
— often uninteresting
— maybe unphysical
— limit time step At
e biasing of the sampling

— towards phase space region of interest

Consequence:
e modifies ensemble averages when using non-Cartesian
coordinates:

— mass-metric tensor effect
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Methods to impose constraints:

Use of generalized (non-Cartesian) coordinates

e Use of Cartesian coordinates and Lagrange multipliers:
Non-linear constraint equations

e Analytical solution (SETTLE, M-SHAKE) J. Comput. Chem. 22 (2001) 501

e Matrix methods (LINCS)

o Iterative methods (SHAKE) J. Comput. Phys. 23 (1977) 327

Constrained versus unconstrained ensemble averages:

e General case
e Tri-atomic molecule

e Bond and bond-angle constraints
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Constraints in MD simulation

Goal:
save computer time,

approximation of quantum degrees of freedom

-1

Integration time step: At << v

(of system)

Four conditions for application of constraints:
1. Frequencies of frozen degrees of freedom >> rest of frequencies
2. Frozen degrees of freedom weakly coupled to remaining ones
3. Metric tensor effects play a minor role
4. Property of interest independent of degrees of freedom that are

to be frozen

van Gunsteren & Berendsen, Mol. Phys. 34 (1977) 1311 - 1327
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Examples:

e Bond-lengths (no constraints: time step At= 0.0005 ps)
- to H-atoms (factor 2 speed-up) (At= 0.001 ps)
- to all atoms (factor 3 speed-up) (At= 0.002 ps)

e Bond-lengths + bond-angles (artefacts, entropy loss)
Methods:

A. Generalized coordinates: rigid molecules
(flexible molecules: impractical)

B. Cartesian coordinates: flexible, holonomic

1. Matrix method + variations matrix inversion
2. SHAKE + variations iterative, efficient
Nomenclature:
Holonomic oy (F1..rn,t) =0 Rheonomous: o, functions of t
Non-holonomic >0 Scleronomous: independent of t

van Gunsteren & Berendsen, Mol. Phys. 34 (1977) 1311 - 1327
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Constraints in molecular simulation

. Why constraints, consequences
. Techniques to impose constraints
. Enhanced efficiency

. Metric tensor effects

gl H W N =

. Physical effects
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Classical dynamical equations of motion

Use of generalized versus Cartesian coordinates

Cartesian Coordinates: x; i=1,2,...,N4

Equations of motion (Newton):

2x. OV(X;, X5, 000, X
miﬁ:_ ( S Ndf) i=1121"'INdf
dt? OX;
Generalized coordinates: 6, i=1,2,...,Ng

Example: torsional angles 6,
Polymer: bonds

bond-angles } constrained
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Equations of motion (Lagrange):

L) N0y 010010y )

a. = —
j=1 ’ dt? o6
Ng do. 2 Ngr Ny do. do
b(_J] — C"k[ ]j( k]
J; T dt J:ZI; T dt ) dt
i=1,2,..., Ny

Coefficients a;;, by;, ¢ depend on
- atomic masses
- topology of polymer
Note: very inefficient (compared to Cartesian coordinates)
- additional summations (over j and k) = coupled equations

- additional non-linear terms (velocities)

U. Stocker et al., Mol. Sim. 29 (2003) 123-138
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Application of constraints using Lagrange
multipliers

Distance constraints:
N L2 2 _ _
Gk(r) = I’klkz — dklkz = O k—1,2,....,N

Lagrangian multipliers:

(Add a zero term to the potential energy in Newton's equations)

Lagrange multipliers depending on t

2.
m, ¢ drt'z(t) - air [wr) + Z (Do (r)}
L 2o

_f° (t) + fi (t)

_ _22|k (t)[ Sk, }Fklkz (t)

Unconstrained forces Constraint forces

J.P. Ryckaert et al., J. Comput. Phys., 23 (1977) 327-341
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Leap-frog time-integration scheme:

F(E + AL) = Ri(t) + ViCt + At/ 2)At + m LR (t) (AL)?

Rt + At) = (t+ At + mfi (£)(AL)?

! must satisfy constraint: o, =0

R+ A0+ M (D0 R (E + A - m (t)(At)ZT i

! quadratic equations in | (t)

2
[riisz (t+At) - 20 (O] mt +mi Jri, (t)(At)Z} ~d2, = k=1,2,...,N,

l analytical
solve : matrix

iterative (SHAKE)
Position corrections due to constraints (SHAKE):
AFi (t + At) = ~2(At) ikl (D), (1)

= My gy (D, (t)

J.P. Ryckaert et al., J. Comput. Phys., 23 (1977) 327-341
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~uc - e 9% =
Arkl — g—k rk1k2 Arkz = — m rk1k2
I'T]k1 / Ko
—UcC
Mk
\ y; 2
FUC di1k2 ,'
k1 \ /
\ /
\ / trained st
R o/ unconstrained step
Mk, dy1k2 Mk,

Positional corrections induced by SHAKE
—-Uuc

-uc - 4 Tk,
Arkk, along rik, /I

<
A

distance > d,q» / _
/ unconstrained step

/ too large — SHAKE fails

/ SHAKE failure means
/ too big (wrong) forces:

-uc
I‘k1 k

\ B
<
~

\‘ " An error in the topology
r or MD input
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Constrained positions:
SHAKE (Fe,r )
SN

r_eference initial _SHAKENzconstrained
Constrained velocities:

Leap-frog:  ri(t + At) = ri(t) + vi(t + At / 2)At

Invert: B {Fi (t + At) - Fi(t)}
vi(t) = At

Where r(t + at)
ri(t)
Constrained forces:
Likewise form: Fi(t+At) =r (t + At) + mi‘lﬁc(t)(At)2

} have been shaken — satisfy the constraints

So constraint force: Rt + At — i (t + At)} m.

—-C
(o - o i L
And constrained force: 2uc\ | fi fi, | /5uc
fk, 1 2|/ fk,

fitt) = fi (t) +Fi(t) A,
= component along the constraint is equal to

that at the other end of the constraint
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Constraints in molecular simulation

. Why constraints, consequences
. Techniques to impose constraints
. Enhanced efficiency

. Metric tensor effects

gl & W N =

. Physical effects
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COMPARISON OF MD ALGORITHMS

Complex system: trypsin inhibitor (BPTI) = 500 atoms
Effect of constraints: bond forces: harmonic — Gear better
other forces: noisy = Verlet better

Fluctuation total energy, AE,,; (kJ/mol)

103
102
102 AEkin
101 101
1
1
101
10-2
101
10-3
10-4 | | | | | 10_2
10—16 10-15 10—15 10—14
At (sec) At (sec)
with harmonic bond forces with bond constraints

W.F.van Gunsteren/Santiago de Chile 271117/31 van Gunsteren & Berendsen, Mol. PhyS. 34 (1977) 1311 - 1327



Constraints in molecular simulation

. Why constraints, consequences

. Techniques to impose constraints
. Enhanced efficiency

. Metric tensor effects

. Physical effects

. Work done by constraint forces

N OO U1 A W N =

. Use of constraints to calculate a free energy

profile
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METRIC TENSOR EFFECT

Definitions:
N atoms 3N Cartesian coordinates X
conjugated momenta p, :8%);(

Hamiltonian ~ H(p,,X) =K(P,)+V(X)
IAe—H(ﬁx,X)/kBTdﬁxdy(

I e_H(ﬁx ’X)/kBTdEXdX

Equilibrium average of observable A: <A>=

Transform to generalised coordinates (q,p)
K, hard coordinates 61[3 (e.g. bond-lengths)
3N-K,, soft coordinates g“ (e.g. rest)
conjugated momenta P°, P°
J'Ae—H(b’,q)/kBTdr)dq
Equilibrium average of A: <A>= je_H(ﬁlq),kBTdﬁdq

Volume element dpdq is invariant under canonical transformation

van Gunsteren, Mol. Phys. 40 (1980) 1015 - 1019
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Consider two cases
1. Flexible model:
Hard variables ﬁﬁare harmonic with infinitely high force constant

V(q) = Vsoft (Qa 1 q’B_»z B) + Vha@ (qﬁ)
Vhard (qﬁ) = % (qﬁ - b)TE(qB —b)

F matrix of harmonic force constants

Integrate over hard variables:  GPpP .
and over: = <A>= j"'dq

_‘-A‘G‘m e—V(q“)/kBqua P
o —
_HG‘UZ e—V(qa)/kBqua

2. Rigid model:
Remove hard variables ql?and 5[3 from Hamiltonian

Integrate over: f)“} < A >= I...dﬁ“

<A

1/2

[Ale
”C_;a 1/2

W.F.van Gunsteren/Santiago de Chile 271117/34
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Flexible model

Determine conjugate momenta p:

1 1_', - 3N
Kinetic energy: K =— Zm X =—'Gq with G.. :Zm 5Xk axk

244 2 e, kaqi aqj

Conjugate momenta (mass-metric tensor)

p=0k ==K =1pC7p

—

Integration over P

J‘e—%pfglﬁ/kBTdrj _ (27thT)3N/2 |§|
Integration over G

o 2(@ D) E(@- b)/kBquB — (2nk T)SN/Z |F|
Equilibrium average of A

JAJG" [F[* eV Tdge

[lof F[ 2 v Tage

1/2

-1/2

A >=

-1/2 —_
Good assumption: |E| independent of q“ , SO it drops out
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Rigid model

3N
. . T - . o __
Kinetic energy: K% = qa Qaqa with Gij = ka
Conjugate momenta k=1
= 0K’ = K*=1p"'G" p"
p” aq G“g" PP

Integ ration over p“

e —3p° Ga p /kBTdI—ja (ZTCk -I-)(BN Kh)/2

Equilibrium average of A

1/2

1/2

| A
J“(_;a 1/2

Calculation of mass-metric tensors

L, ogf ogt
ot H 1 J
‘C_S“‘ too difficult, but Z 8Xk 8Xk

/\§\=\'ﬂﬁ\

e—V(ﬁ“)/kBqua

<A>= —
e—V(q )/kBqu»oc

can be evaluated

Fixman’s theorem: ‘(_;0‘

Correction potential energy term V'= 1 k T In‘HB‘
= free energy due to entropy

W.F.van Gunsteren/Santiago de Chile 271117/36

oq;’

(0

B
Bln‘lj‘



Example of mass-metric tensor effect

n-butane
Hard degrees of freedom (5):

Soft degree of freedom (1):

V'(g) = 1kgTIn|H" \HB\EZcf ()

bonds b
angles 6
torsion ¢

ba

f(g)=[4—Lcos0]"” [cose (1+cosB)coso]

c, = complicated functions of 6

crosses: ¢-distribution (from SD)
without V' term
(not flat)

squares: ¢-distribution (from SD)
with V' term
(flat)

W.F.van Gunsteren/Santiago de Chile 271117/37
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Example of mass-metric tensor calculation ™
Triatomic molecules b,

Hard degrees of freedom b, b, f =b, = \/Xf3 + Y123 + 2123 =1,
Soft degree of freedom a

2 2 2
op :bz :\/X23+y23+223 =Ty

2 2 2
r13 + r23 B r12

_matri g, =Cosa =
Hmatrl: B B B B Bs \ 2r13r23
HE =3 m;? og; od; L 90; aq; L 90; aq;
" “ | 6x, ox oz, 6z
k=1 k % ayk ayk k k
m;+m
o m,'+m;" mgicosa) 1| 7wm  COSA
- m;'cosa my'+m; ) m,| cosa mzm;f
G*  rigid
\HB\=(m11+m31)(m21+m31)—m32coszoc=“ =
G| flexible

V'= 1k TIn{(m* + mg)(m,! +m;") —m;? cos®

For restricted variation of angle a: metric tensor has almost no effect

W.F.van Gunsteren/Santiago de Chile 271117/38



Constraints in molecular simulation

. Why constraints, consequences
. Techniques to impose constraints
. Enhanced efficiency

. Metric tensor effects

g1 A W N =

. Physical effects
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Physical effect of application of constraints

gy . Macromolecules 15 (1982) 1528 - 1544
Atom-positional fluctuations

Protein: Bovine pancreatic trypsin inhibitor (BPTI) MD simulations

— Mo Constrainfs (NC/

~ 1.Or - ——— (Length Constraints (LC)
“-:- - eneeeee Length and Angle Constroints (LAC)
Z OB

=

%

O

5
-

=
=

Q

3

(Wi

:

20 3Q
RESIDUE NUMBER

Bond-length constraints do not affect atomic motions
Bond-angle constraints do considerably restrict the atomic motions (entropy loss)
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Physical effect of application of constraints

Angular motion (b 22phe oNCGO)  —— ac
Protein: BPTI MD simulations i T

NC = no constraints i

LC = bond-length constraints ICF n A
M
L ; \1
Bond-length constraints Jo It .
- - gnm f""- —~, i
do not significantly affect oI VN Aanst

the motions of
the bond angles or
the torsional angles

22 Phe wCq-C-N-Cq

SPECTRAL DENSITY (ARBITRARY UNITS)

Macromolecules 15 (1982) 1528 - 1544
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On the relative merits of flexible versus rigid models for use

in computer simulation of molecular liquids
Ilario Tironi et al., Chem. Phys. Lett. 250 (1996) 19-24

Rigid Flexible
Arguments:
I Principle: approximation of quantum mechanics

No internal vibrations: Classical vibrations:

ho  1000-—4000cm™ harmonic distribution

KeT 200cm™
IT Technical: computational efficiency, elegance
A. Large At (4x) Multiple time step methods (since "90s)
B. Less different frequencies High<~ low frequency modes

fast relaxation slow energy exchange

may lead to different temperatures
in high versus low frequency modes
Remedy: a) Ewald/exact forces
b) Separate T-scaling (Rot/Trans/Vib)
ITI Practical: liquid properties better?
Compare: Model fitted structural
- to same data thermodynamic - PROPERTIES
- in same manner electric
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Molecular simulation: algorithms, boundary
conditions and constraints

1. Generating configurational ensembles

a. Integrating equations of motion
1. Newton: molecular dynamics simulation (MD)
2. Langevin: stochastic dynamics simulation (SD)
b. Monte Carlo type approach
1. Metropolis Monte Carlo simulation (MC)
2. Replica exchange technique (RE)

2. Boundary conditions
1. Spatial boundary conditions
2. Thermodynamic boundary conditions
- temperature
- pressure
- other

3. Constraints
1. Distance constraints
2. Other constraints

4. MD algorithm
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Spatial distribution of licences
GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field
Generally available: http://www.gromos.net
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