International Spring School Statistical Thermodynamics, Santiago de Chile Tuesday, November 28, 2017 Lecture 18

Methods for searching and sampling configurational space

Prof. Dr. Wilfred F. van Gunsteren ETH Zürich, Switzerland

Searching and sampling configuration space

A. Types of methods for searching configuration space

A. Systematic or exhaustive search

B. Heuristic search

- 1. Non-step methods (e.g. Distance Geometry)
- 2. Step methods: change of a complete configuration (e.g. MC, MD, SD)
- 3. Step methods: build-up of a configuration (e.g. CBMC)

B. Types of search enhancement techniques

1. Deformation or smoothening of the potential energy surface

- Soft-core non-bonded interaction
- Local-elevation search
- Coarse graining of the molecular model

2. Scaling of system parameters

- Temperature annealing
- Tight coupling to a heat bath
- Mass scaling
- Mean-field approaches

3. Multi-copy searching and sampling

- Replica-exchange and multi-canonical algorithms
- Cooperative search: SWARM MD

Methods for searching configuration space for configurations r^N with low V(r^N)=energy

 \vec{r}^N cartesian

 φ^N angles

- I. Molecular coordinates as variables:
 - A. Systematic or exhaustive search
 - Scan complete space (SS)

small molecules

- **B.** Heuristic search
 - Generate tiny set of representative conformers:
 - 1. Non-step methods

Distance geometry algorithms (DG)

Distribution? Solvent?

2. Step methods: change of a complete configuration

3. Step methods: build-up of a configuration

configurational bias MC

Techniques to enhance the searching and sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

- a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
- b. gradual introduction of longer-range distance restraints in variable target structure refinement based on NMR NOE data
- c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
- d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
- e. avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
- f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
- g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
- h. freezing of high-frequency degrees of freedom through the use of constraints
- i. coarse-graining the model by reduction of the number of interaction sites

2. Scaling of system parameters

- a. temperature annealing
- b. tight coupling to heat bath
- c. mass scaling
- d. mean-field approaches

3. Multi-copy searching and sampling

- a. genetic algorithms
- b. replica-exchange and multi-canonical algorithms
- c. cooperative search: SWARM

Review: J. Comput. Chem. 29 (2007) 157-166

Methods for searching configuration space for configurations r^N with low V(r^N)=energy

 \vec{r}^N cartesian

 φ^N angles

- I. Molecular coordinates as variables:
 - A. Systematic or exhaustive search
 - Scan complete space (SS)

small molecules

- **B.** Heuristic search
 - Generate tiny set of representative conformers:
 - 1. Non-step methods

Distance geometry algorithms (DG)

Distribution? Solvent?

2. Step methods: change of a complete configuration

3. Step methods: build-up of a configuration

configurational bias MC

Systematic search of conformational space

1. Scan complete or significant part of space

2. Exclude subspaces based on:

- physical/chemical knowledge
- solutions obtained so far

Exponential growth of computing effort as function of number of degrees of freedom only for small molecules

Methods for searching configuration space for configurations r^N with low V(r^N)=energy

 \vec{r}^N cartesian

 φ^N angles

- I. Molecular coordinates as variables:
 - A. Systematic or exhaustive search
 - Scan complete space (SS)

small molecules

- **B. Heuristic search**
 - Generate tiny set of representative conformers:
 - 1. Non-step methods

Distance geometry algorithms (DG)

Distribution? Solvent?

2. Step methods: change of a complete configuration

3. Step methods: build-up of a configuration

configurational bias MC (CBMC)

Generating spatial structures or searching conformational space

Step methods: change of a complete configuration

1. Energy minimization:

$$\Delta \mathbf{x} = -\frac{\partial \mathsf{V}_{\mathsf{pot}}}{\partial \mathsf{x}} \cdot \mathsf{constant}$$

2. Monte Carlo:

 $\Delta x = random$

acceptance probability $= e^{-[V_{pot}(x+\Delta x)-V_{pot}(x)]/kT}$

3. Molecular Dynamics (Newton):

$$m\frac{d^{2}x}{dt^{2}} = -\frac{\partial V_{pot}}{\partial x} \begin{cases} v_{new} = v_{old} - \frac{1}{m} \frac{\partial V_{pot}}{\partial x} \Delta t \\ x_{new} = x_{old} + v_{new} \Delta t \end{cases}$$

Only local minimum is found, no escape from it

Good for liquids of small molecules, not for folded long chain molecules

Surmounts energy barriers $\sim k_B T$

4. Stochastic dynamics (Langevin):

$m\frac{d^{2}x}{dt^{2}} = -\frac{\partial V_{pot}}{\partial x} + random \text{ force } -m\gamma\frac{dx}{dt}$ friction

MD + randomisation

5. Modified molecular dynamics (PEACS):

Enhances barrier crossing

Potential Energy Annealing Conformational Search

MD plus
$$\frac{dV_{pot}(t)}{dt} = \frac{1}{\tau_v} \left[V_{reference} - V_{pot}(t) \right]$$

slowly lowered

R.C. van Schaik et al., J. Comp.-Aided Mol. Des. 6 (1992) 97-112

Techniques to enhance the searching and sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

- a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
- b. gradual introduction of longer-range distance restraints in variable target structure refinement based on NMR NOE data
- c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
- d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
- e. avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
- f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
- g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
- h. freezing of high-frequency degrees of freedom through the use of constraints
- i. coarse-graining the model by reduction of the number of interaction sites

2. Scaling of system parameters

- a. temperature annealing
- b. tight coupling to heat bath
- c. mass scaling
- d. mean-field approaches

3. Multi-copy searching and sampling

- a. genetic algorithms
- b. replica-exchange and multi-canonical algorithms
- c. cooperative search: SWARM

Review: J. Comput. Chem. 29 (2007) 157-166

Use of soft-core non-bonded interactions

Thomas Beutler et al. Chem. Phys. Letters 222 (1994) 529-539

Use of non-physical potential energy terms

Non-physical softer non-bonded term that allows atoms to pass

through each other:

Conditions:
$$V(0) = V_m \quad V'(0) = 0$$

 $V(r_0) = 0 \quad V'(r_0) = 0$

2

1. V(r) is a function of r:

$$f(\mathbf{r}) = \mathbf{a} + \mathbf{br} + \mathbf{cr}^2 + \mathbf{dr}^3$$
$$V(\mathbf{r}) = V_m \left[1 - 3 \left(\frac{\mathbf{r}}{\mathbf{r}_0}\right)^2 + 2 \left(\frac{\mathbf{r}}{\mathbf{r}_0}\right)^3 \right]$$
$$f'(\mathbf{r}) = -6V_m \frac{\mathbf{r}}{\mathbf{r}_0^2} \left[1 - \left(\frac{\mathbf{r}}{\mathbf{r}_0}\right) \right]$$

.

2. V(r) is a function of r²: $q(r) = a + br^{2} + cr^{4}$

$$g(r) = a + br^{-} + cr^{+}$$
$$V(r) = V_{m} \left[1 - \left(\frac{r}{r_{o}}\right)^{2} \right]^{2}$$
$$g'(r) = -4V_{m} \frac{r}{r_{0}^{2}} \left[1 - \left(\frac{r}{r_{0}}\right)^{2} \right]$$

3. V(r) is general van der Waals plus Coulomb plus reaction-field form:

$$V(r) = \frac{C_{12}}{\left[\alpha + r_{ij}^{6}\right]^{2}} - \frac{C_{6}}{\left[\alpha + r_{ij}^{6}\right]} + \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}\varepsilon_{r}} \left(\frac{1}{\left[\alpha_{c} + r_{ij}^{2}\right]^{1/2}} - \frac{0.5C_{rf}r^{2}}{\left[\alpha_{c} + R_{rf}^{2}\right]^{1/2}} - \frac{1 - 0.5C_{rf}}{R_{rf}}\right)$$

lim = standard form
 $\alpha \neq 0$: $V(0)$ = finite $V'(0) = 0$
$$V(r)\uparrow$$

Techniques to enhance the searching and sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

- a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
- b. gradual introduction of longer-range distance restraints in variable target structure refinement based on NMR NOE data
- c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
- d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
- e. avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
- f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
- g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
- h. freezing of high-frequency degrees of freedom through the use of constraints
- i. coarse-graining the model by reduction of the number of interaction sites

2. Scaling of system parameters

- a. temperature annealing
- b. tight coupling to heat bath
- c. mass scaling
- d. mean-field approaches

3. Multi-copy searching and sampling

- a. genetic algorithms
- b. replica-exchange and multi-canonical algorithms
- c. cooperative search: SWARM

Review: J. Comput. Chem. 29 (2007) 157-166

Methods to search conformational space

- **Idea**: Include information obtained so far during the simulation into the search scheme: **memory function**
- A. Characterize molecular conformations using:
 - cartesian coordinates
 - torsional angles ϕ , ψ , χ

- dihedral angles spanning residues:

Review searching: M. Christen & W.F. van Gunsteren J. Comput. Chem. 29 (2007) 157 - 166

B. Penalize the visited conformations by changing the energy function V as function of time

 $V\left(\left\{\boldsymbol{\phi}_{i}\right\}\right) = V_{_{phys}}\left(\left\{\vec{\boldsymbol{r}}_{i}\right\}\right) + V_{_{memory}}\left(\left\{\boldsymbol{\phi}_{i}\right\}\right)$

- potential energy term that pushes molecule out of the current conformation $\left\{\phi_{_{i}}^{_{0}}\right\}$

Implementation

- **1.** Use torsion angles, ϕ_i
- **2. Each conformation** ϕ_1 , ϕ_2 , ϕ_3 ,..., $\phi_n = \phi^n$
- 3. Discretise to M parts \rightarrow Mⁿ grid points ϕ^n_0
- 4. Gaussian function at grid points:

$$\mathbf{V}_{_{\!\!\mathbf{mem}}}\left(\boldsymbol{\varphi}^{\mathsf{n}}\right) = \mathbf{k}_{_{\!\!\mathbf{mem}}} \mathbf{N}_{_{\!\!\boldsymbol{\varphi}^{\mathsf{n}}_{_{\!\!\boldsymbol{0}}\!}}} \mathbf{e}^{_{\!\!\frac{-\left(\boldsymbol{\varphi}^{\mathsf{n}}-\boldsymbol{\varphi}^{\mathsf{n}}_{_{\!\!\boldsymbol{0}}\!}\right)^{^{2}}}}$$

5.
$$V_{\text{total}} = V_{\text{phys}} + V_{\text{mem}}$$

A toy application

Pentane (two torsional angles)

Complete space can be mapped out

Test case: pentane

Thomas Huber et al. J. Comp. Aided Mol. Design 8 (1994) 695

2 dihedral angles (3 minima each) \rightarrow 9 low V_{phys} conformers

Local elevation search: pentane

Local-elevation simulation of pentane (united atoms) T=300 K, Gaussian local-elevation function with k=5kJ/mol per MD step

simulation time **20ps**

simulation time **100ps**

Higher-energy conformations are sampledAlmost all conformations are sampledin 20 ps local-elevation MD simulationin 100 ps LE-MD simulation

The local elevation simulation method

Normal simulation: relevant properties

- Many conformers
 - few visited
- Compact representation should be possible

Local-elevation simulation:

- run simulation
- store visited conformations (using compact representation)
- push system away when old conformation is seen

Cyclosporin A

- Amid bond (fixed to trans) ω-dihedral
- central bond of φ-dihedral
- central bond of ψ-dihedral

Cyclosporin A: potential energy

Cyclosporin A: similarity of conformations

Criterion: $\Delta \phi_i \leq 30^\circ$ (upper) $\leq 45^\circ$ (lower) for each of the 11 ϕ -angles

164 = average number of visits of same conformer

SD simulation at 300 K

Cyclosporin A: similarity of conformations

Criterion: Δφ_i ≤ 30° (upper) ≤ 45° (lower) ∫

for each of the 11 ϕ -angles

26 visits on average

Cyclosporin A: similarity of conformations

Criterion: $\Delta \phi_i \leq 45^\circ$ (upper) $\leq 60^\circ$ (lower) for each of the 11 ϕ -angles

1.6 visit on average

Local elevation simulation at 300 K

Ribonuclease A: RMS fluctuations in the loop region

Figure 2. Root mean square fluctuations of atomic positions in ribonuclease A. Upper graph: simulations in vacuo with and without local elevation search. The simulation using local elevation search produces larger positional fluctuations than without, which is indicative of the larger conformational space searched. Lower graph: simulation in solvent with local elevation search. The fluctuations are smaller than those encountered in the vacuum simulations.

Local-elevation MD searches a much larger conformational space

Ribonuclease A: loop conformations

Standard MD Local-elevation MD

Figure 3. Superposition of 200 conformations of ribonuclease A taken at 5 ps intervals (total of 1 ns simulation time) in vacuo: (a) simulation without local elevation; (b) with local elevation search in the loop consisting of residues 33-43. The larger conformational space searched is apparent.

Local-elevation MD searches a much larger conformational space

Scott et al., J. Phys. Chem. A103 (1999) 3596-3607

Techniques to enhance the searching and sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

- a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
- b. gradual introduction of longer-range distance restraints in variable target structure refinement based on NMR NOE data
- c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
- d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
- e. avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
- f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
- g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
- h. freezing of high-frequency degrees of freedom through the use of constraints
- i. coarse-graining the model by reduction of the number of interaction sites

2. Scaling of system parameters

- a. temperature annealing
- b. tight coupling to heat bath
- c. mass scaling
- d. mean-field approaches

3. Multi-copy searching and sampling

- a. genetic algorithms
- b. replica-exchange and multi-canonical algorithms
- c. cooperative search: SWARM

Review: J. Comput. Chem. 29 (2007) 157-166

Coarse-grained versus fine-grained models

liquid alkanes: hexadecane

AL (λ =0) *All-atom model* (non-hydrogen) 16 (CH₂ or CH₃) atoms

MAP "mapped" all-atom configurations

Centre of mass $A_1 - A_4$

Centre of mass $B_1 - B_4$

Centre of mass $C_1 - C_4$

Centre of mass $D_1 - D_4$ CG (λ=1) Coarse-grained model 4 atoms

Compare: - structural characteristics - energetic / entropic characteristics

M. Christen & WFvG, J. Chem. Phys. 124 (2006) 154106

Algorithm for mixed FG/CG simulation

M. Christen & WFvG, J. Chem. Phys. 124 (2006) 154106

Multi-grained simulation of 25 hexadecanes in water

M. Christen & W.F. van Gunsteren, J. Chem. Phys, **124** (2006) 154106

 FG
 FG

 8.5ps
 25.5ps

CG level simulation with occasional switching to **FG** level enhances exploration of **FG** conformational space

Techniques to enhance the searching and sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

- a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
- b. gradual introduction of longer-range distance restraints in variable target structure refinement based on NMR NOE data
- c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
- d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
- e. avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
- f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
- g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
- h. freezing of high-frequency degrees of freedom through the use of constraints
- i. coarse-graining the model by reduction of the number of interaction sites

2. Scaling of system parameters

- a. temperature annealing
- b. tight coupling to heat bath
- c. mass scaling
- d. mean-field approaches

3. Multi-copy searching and sampling

- a. genetic algorithms
- b. replica-exchange and multi-canonical algorithms
- c. cooperative search: SWARM

Review: J. Comput. Chem. 29 (2007) 157-166

Search enhancement techniques

Scale system parameters

1. Search at high temperature, T annealing

Scaling of system parameters

2. Tight coupling to a temperature bath:

velocities are maintained going up hill \rightarrow

 \rightarrow more barrier crossings ?

3. Scaling of atomic masses:

Equilibrium properties are independent of masses

increase some masses \rightarrow more inertia \rightarrow

 \rightarrow more barrier crossings ?

4. Enhanced sampling via a mean-field approach:

Example: Huber et al., Biopolymers **39** (1996) 103-114 Optimization methods for conformational sampling using a Boltzmannweighted mean-field approach

Techniques to enhance the searching and sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

- a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
- b. gradual introduction of longer-range distance restraints in variable target structure refinement based on NMR NOE data
- c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
- d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
- e. avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
- f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
- g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
- h. freezing of high-frequency degrees of freedom through the use of constraints
- i. coarse-graining the model by reduction of the number of interaction sites

2. Scaling of system parameters

- a. temperature annealing
- b. tight coupling to heat bath
- c. mass scaling
- d. mean-field approaches

3. Multi-copy searching and sampling

- a. genetic algorithms
- b. replica-exchange and multi-canonical algorithms
- c. cooperative search: SWARM

Review: J. Comput. Chem. 29 (2007) 157-166

Metropolis Monte Carlo method

Algorithm:

DO large number of steps n=1,2,...

- 1. Make a step $\Delta \vec{r}$ in configuration space: $\vec{r}_{n+1}^N = \vec{r}_n^N + \Delta \vec{r}$
- 2. Calculate the change in potential energy ΔE : $E_n = V(\{\vec{r}_n^N\})$ $\Delta E = E_{n+1} - E_n$

Metropolis Monte Carlo method

Rationale: consider the probability of **transiton** $t_{x \to y}$ from state **x** to state **y**

Equilibrium:

 $P_{2} \cdot t_{2 \rightarrow 1} = P_{1} \cdot t_{1 \rightarrow 2}$ $P_{2} \cdot 1 = P_{1} \cdot e^{-(E_{2} - E_{1})/k_{B}T}$ or $\frac{P_{2}}{P_{1}} = \frac{e^{-E_{2}/k_{B}T}}{e^{-E_{1}/k_{B}T}}$

Each configuration occurs with **Boltzmann** probability.

Note:

- Assumption: detailed balance between states
- MC steps must cover Cartesian space **uniformly**: *dxdydz*
- Using polar coordinates, sample $\propto r^2 \sin\theta dr d\theta d\phi$: **non-uniform** sampling
- **Unphysical steps** are possible: exchange of particles

Replica-exchange simulation

- Idea: A number of replicas of a system that do *not* interact with each other, is simulated simultaneously.
 - The **replicas** are
 - a) at different thermodynamic state points
 - e.g. different temperatures (T_s) , or
 - b) characterised by different Hamiltonians,
 - e.g. interatomic interactions, $H(\mathbf{p}^{N}, \mathbf{r}^{N}; \lambda_{s})$
 - From time to time, after time period τ_{exr} a Monte Carlo exchange of configurations r_m and r_n between two replicas m and n

is attempted with exchange probability (assumption: detailed balance)

$$p(m \leftrightarrow n) = min(1, exp(-\Delta_{mn})) = \begin{cases} 1 & for \Delta_{mn} \leq 0\\ exp(-\Delta_{mn}) & for \Delta_{mn} > 0 \end{cases}$$

with (T-REMD)
$$\Delta_{mn} = \frac{\rho_{T_m}(\vec{p}_n^N, \vec{r}_n^N)\rho_{T_n}(\vec{p}_m^N, \vec{r}_m^N)}{\rho_{T_m}(\vec{p}_m^N, \vec{r}_m^N)\rho_{T_n}(\vec{p}_n^N, \vec{r}_n^N)}$$

with (H-REMD)
$$\Delta_{mn} = \frac{\rho_{H_m}(\vec{p}_n^N, \vec{r}_n^N)\rho_{H_n}(\vec{p}_n^N, \vec{r}_n^N)}{\rho_{H_m}(\vec{p}_m^N, \vec{r}_n^N)\rho_{H_n}(\vec{p}_n^N, \vec{r}_n^N)}$$

and probability density $\rho(\vec{p}^N, \vec{r}^N) \propto exp(-H(\vec{p}^N, \vec{r}^N) / k_B T)$

Temperature replica-exchange SD-simulation of 11 replicas (ΔT =10K) of a box with 512 n-butanes exchange frequency: $T_{ex} = 1ps^{-1}$

Temperature replica-exchange MD simulation of 11 replicas (ΔT =5K) of a box with Ca²⁺ and SO₄²⁻ ions in water (2002 molecules) exchange frequency: $\tau_{ex} = 2ps^{-1}$

1. Are the potential energy distributions overlapping ? YES

т	D (Ca ²⁺)	D (SO ₄ ²⁻)
K	nm/ns	nm/ns
300	1.06	1.23
325	1.17	1.31
350	1.63	1.84

2. Are the replicas exchaging sufficiently often ? YES

3. Is the ion diffusion enhanced by more than a factor $N_{replicas} = 11$?

NO: T-replica-exchange MD is not more efficient than standard MD in this case

A.P.E. Kunz & WFvG, J. Phys. Chem B 115 (2011) 2931-2936

Coarse-grained versus fine-grained models

liquid alkanes: hexadecane

AL (λ =0) *All-atom model* (non-hydrogen) 16 (CH₂ or CH₃) atoms

MAP "mapped" all-atom configurations

Centre of mass $A_1 - A_4$

Centre of mass $B_1 - B_4$

Centre of mass $C_1 - C_4$

Centre of mass $D_1 - D_4$ CG (λ=1) Coarse-grained model 4 atoms

Compare: - structural characteristics - energetic / entropic characteristics

M. Christen & WFvG, J. Chem. Phys. 124 (2006) 154106

Multi-grained simulation of liquid octane

grain level of the 24 replicas during 300 replica exchange steps

M. Christen & WFvG, J. Chem. Phys. 124 (2006) 154106

Multi-grained simulation of 25 hexadecanes in water

M. Christen & W.F. van Gunsteren, J. Chem. Phys, **124** (2006) 154106

 FG
 FG

 8.5ps
 25.5ps

CG level simulation with occasional switching to **FG** level enhances exploration of **FG** conformational space

Techniques to enhance the searching and sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

- a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
- b. gradual introduction of longer-range distance restraints in variable target structure refinement based on NMR NOE data
- c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
- d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
- e. avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
- f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
- g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
- h. freezing of high-frequency degrees of freedom through the use of constraints
- i. coarse-graining the model by reduction of the number of interaction sites

2. Scaling of system parameters

- a. temperature annealing
- b. tight coupling to heat bath
- c. mass scaling
- d. mean-field approaches

3. Multi-copy searching and sampling

- a. genetic algorithms
- b. replica-exchange and multi-canonical algorithms
- c. cooperative search: SWARM

Review: J. Comput. Chem. 29 (2007) 157-166

Multi-copy search techniques: the SWARM method

Idea: combine a swarm of molecules with molecular trajectories into a cooperative system that searches conformational space (like a swarm of insects)

Implementation:

each molecule is, in addition to the physical forces, subject to (artificial) forces that drive the trajectory of each molecule toward an average of the trajectories of the swarm of molecules

Huber and van Gunsteren: J.Phys.Chem. A102 (1998) 5937-5943

SWARM-MD: Searching configurational space by cooperative molecular dynamics

Methods for searching configuration space for configurations r^N with low V(r^N)=energy

 \vec{r}^N cartesian

 φ^N angles

- I. Molecular coordinates as variables:
 - A. Systematic or exhaustive search
 - Scan complete space (SS)

small molecules

- **B.** Heuristic search
 - Generate tiny set of representative conformers:
 - 1. Non-step methods

Distance geometry algorithms (DG)

Distribution? Solvent?

2. Step methods: change of a complete configuration

3. Step methods: build-up of a configuration

configurational bias MC

Techniques to enhance the searching and sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

- a. omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
- b. gradual introduction of longer-range distance restraints in variable target structure refinement based on NMR NOE data
- c. softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
- d. reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
- e. avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
- f. softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
- g. circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
- h. freezing of high-frequency degrees of freedom through the use of constraints
- i. coarse-graining the model by reduction of the number of interaction sites

2. Scaling of system parameters

- a. temperature annealing
- b. tight coupling to heat bath
- c. mass scaling
- d. mean-field approaches

3. Multi-copy searching and sampling

- a. genetic algorithms
- b. replica-exchange and multi-canonical algorithms
- c. cooperative search: SWARM

Review: J. Comput. Chem. 29 (2007) 157-166

Biased sampling

Problem: If $V(\vec{r}^N)$ is large for given regions in configurational space, the sampling in MC, MD, SD simulations will be poor.

Remedy: Add a biasing potential energy term $V^{BIAS}(\vec{r}^N)$

to the (physical) Hamiltonian $H(\vec{r}^N, \vec{p}^N)$, possibly based on experimental data, that focuses the sampling on a given region of configurational space.

Ensemble average of a quantity $Q(\vec{r}^N)$:

$$"=\frac{\iint Q(\vec{r}^{N})e^{-H(\vec{r}^{N},\vec{p}^{N})/k_{B}T}d\vec{p}^{N}d\vec{r}^{N}}{\iint e^{-H(\vec{r}^{N},\vec{p}^{N})/k_{B}T}d\vec{p}^{N}d\vec{r}^{N}}"$$

$$=\frac{\iint Qe^{+V^{BIAS}/k_{B}T}e^{-(H+V^{BIAS})/k_{B}T}d\vec{r}^{N}d\vec{p}^{N}}{\iint e^{-(H+V^{BIAS})/k_{B}T}d\vec{r}^{N}d\vec{p}^{N}} \bullet \frac{\iint e^{-(H+V^{BIAS})/k_{B}T}d\vec{r}^{N}d\vec{p}^{N}}{\iint e^{+V^{BIAS}/k_{B}T}e^{-(H+V^{BIAS})/k_{B}T}d\vec{r}^{N}d\vec{p}^{N}}$$

$$=\frac{\langle Qe^{+V^{BIAS}/k_{B}T} >_{BIAS}}{\langle e^{+V^{BIAS}/k_{B}T} >_{BIAS}}$$

Unbiased ensemble average of Q can be obtained from two biased ensemble averages.

Searching and sampling configuration space

A. Types of methods for searching configuration space

A. Systematic or exhaustive search

B. Heuristic search

- 1. Non-step methods (e.g. Distance Geometry)
- 2. Step methods: change of a complete configuration (e.g. MC, MD, SD)
- 3. Step methods: build-up of a configuration (e.g. CBMC)

B. Types of search enhancement techniques

1. Deformation or smoothening of the potential energy surface

- Soft-core non-bonded interaction
- Local-elevation search
- Coarse graining of the molecular model

2. Scaling of system parameters

- Temperature annealing
- Tight coupling to a heat bath
- Mass scaling
- Mean-field approaches

3. Multi-copy searching and sampling

- Replica-exchange and multi-canonical algorithms
- Cooperative search: SWARM MD

Spatial distribution of licences GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: <u>http://www.gromos.net</u>