International Spring School Statistical Thermodynamics, Santiago de Chile Wednesday, November 29, 2017 Lecture 20

Accounting for polarisation effects in bio-molecular simulation

Prof. Dr. Wilfred F. van Gunsteren ETH Zürich, Switzerland

W.F.van Gunsteren/Santiago de Chile 291117/1

A. Why polarisability ?

B. Six aspects

C. Charge-on-spring (COS) models

W.F.van Gunsteren/Santiago de Chile 291117/2

A. Why polarisability ? 1. Effects of polarisability

B. Six aspects

C. Charge-on-spring (COS) models

Effects of polarisability

- I Liquids, water
- **1.** Dipole moment of a water molecule:

gas phase = 1.85 Debye liquid phase ~ 2.5 Debye

water molecule is polarised when immersed in water

2. Polarisation energy of liquid water

	~ 10 kJ/mol	
potential energy:	42 kJ/mol	polarisation energy ~ 25%

1 eV = 97 kJ/mol or 1 kJ/mol = 0.01 eV

1 kcal/mol = 4.184 kJ/mol or 1 kJ/mol = 0.24 kcal/mol

Effects of polarisability

3. Macroscopic polarisation as function of the frequency ω of the oscillating electric field \vec{E}

the dielectric permittivity $\varepsilon_r(\omega)$ is dependent on the frequency ω of the oscillating field $\vec{E}(\omega)$ liquid water $\varepsilon_r(0) = \varepsilon_r(\text{static}) = 78$ electronic + orientation $\varepsilon_r(\infty) = \varepsilon_r(\text{infinite freq.}) \ge 2-5$ only electronic

Consequence: gas phase water models

(e.g. derived using quantum-mechanical models)
will not represent liquid water,
if explicit polarisation is not included

Effects of polarisability

Lipids and proteins in membranes II Carbon atoms of lipids can get polarised upon protein insertion **Proteins, ligand binding** III enzyme polarised part of the protein ligand (with charge or large dipole)

Protein can get polarised upon ligand binding

A. Why polarisability ?

- **1. Effects of polarisability**
- 2. Limitations of non-polarisable force fields

B. Six aspects

C. Charge-on-spring (COS) models

Limitations of non-polarisable force fields

1. Solvation of polar amino-acid side-chain analogs

One set of atomic charges and van der Waals parameters cannot reproduce both:

heat of vaporisation
of the liquidand
free energy of solvation in
polar solvent: water

GROMOS **53A5** parameters

GROMOS **53A6** parameters

due to the different polarisability of these two environments.

Free energy of solvation in apolar solvent, cyclohexane, is compatible with both using a non-polarisable force field.

2. Solvation of dimethylether (DME)

Polarisable models yield better (free) energies (of solvation)

3. Hydrophobic solvation in water – ethylene glycol mixtures

Polarisable models can reproduce the maximum in the free enthalpy of solvation as function of ethylene glycol mole fraction

W.F.van Gunsteren/Santiago de Chile 291117/8

Heat of vaporization for pure liquids

Oostenbrink et al., J Comput. Chem. 25 (2004) 1656-1676

Free energy of solvation in cyclohexane

amino acid analogues (polar)

Oostenbrink et al., J Comput. Chem. 25 (2004) 1656-1676

W.F.van Gunsteren/Santiago de Chile 291117/10

Free energy of solvation in water

amino acid analogues (polar)

Oostenbrink et al., J Comput. Chem. 25 (2004) 1656-1676

Use of polarisable force fields

A polarisable force field for dimethyl ether, cyclohexane and water

	pure DME	1 DME in cyclohexane	1 DME in water
	ΔH_{vap} [kJ mol ⁻¹]	ΔG_{solv} [kJ mol ⁻¹]	$\Delta G_{\text{hydr}} \text{ [kJ mol}^{-1} \text{]}$
Experiment	21.7	~ -9.5	~ -7.6
DME _{nonpol} /solv _{nonpol}	21.3	-9.3	-3.2
DME _{pol} /solv _{nonpol}	21.0	-8.3	-9.6
DME _{pol} /solv _{pol}	21.0	-9.9	-7.0

Non-polarisable force field has difficulty reproducing solvation in *non-polar* and *polar* solvent.

Polarisable DME improves the solvation in *water*, but degrades solvation in *cyclohexane*.

Polarisable solvent increases the transferability

between different environments further.

Geerke & van Gunsteren, J Phys. Chem. B 111 (2007) 6425-6436

Hydrophobic hydration (argon) in water-ethylene-glycol mixtures

Non-polarisable models versus polarisable models

W.F.van Gunsteren/Santiago de Chile 291117/13

Geerke & van Gunsteren, Mol. Phys. 105 (2007) 1861-1881

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

1. Definition, distinctions, approximations

C. Charge-on-spring (COS) models

Accounting for polarisation in molecular simulation

Polarisation

Change the *multipole moments* $\mu^{(n)}$ of a charge distribution due to an (applied) electric field \dot{E}

monopole:charge q
dipole:dipole $\vec{\mu}$ quadrupole:... octupole:

. . .

Potential and field of a charge distribution

 \vec{r}

 θ

Coulomb potential

$$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r}'$$

Series expansion of the integrand

$$\frac{1}{|\vec{r} - \vec{r}'|} = \left[(x - x')^2 + (y - y')^2 + (z - z')^2 \right]^{-\frac{1}{2}} \qquad \rho(\vec{r}') = \text{charge density}$$
$$= \left[x^2 + y^2 + z^2 - 2(xx' + yy' + zz') + x'^2 + y'^2 + z'^2 \right]^{-\frac{1}{2}}$$
$$= \left[r^2 - 2\vec{r} \cdot \vec{r}' + r'^2 \right]^{-\frac{1}{2}}$$
$$= \frac{1}{r} \left[1 - \frac{2\vec{r} \cdot \vec{r}'}{r^2} + \left(\frac{r'}{r}\right)^2 \right]^{-\frac{1}{2}}$$
$$= \text{assume } |\vec{r}'| \ll |\vec{r}| \text{ and use } [1 + x]^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots$$

Potential and field of a charge distribution

Series expansion of the integrand

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} \left[1 + \frac{\vec{r} \cdot \vec{r}'}{r^2} - \frac{1}{2} \left(\frac{r'}{r} \right)^2 + \frac{3}{2} \frac{(\vec{r} \cdot \vec{r}')^2}{r^4} - \frac{3}{2} \frac{(\vec{r} \cdot \vec{r}') \vec{r}'^2}{r^4} + \frac{3}{8} \left(\frac{r'}{r} \right)^4 \dots \right]$$

I II III III (V)
$$1 \frac{r'}{r} \left(\frac{r'}{r} \right)^2 \left(\frac{r'}{r} \right)^2$$

Term I: monopole

Term II: dipole

Term III: quadrupole

$$\varphi^{I}\left(\vec{r}\right) = \frac{1}{4\pi\varepsilon_{0}} \frac{1}{r} \int \rho\left(\vec{r}\,'\right) d\vec{r}\,' = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r} \qquad q = \text{charge}$$

$$\varphi^{II}\left(\vec{r}\right) = \frac{1}{4\pi\varepsilon_{0}} \frac{\vec{r}}{r^{3}} \cdot \int \vec{r}\,' \rho\left(\vec{r}\,'\right) d\vec{r}\,' = \frac{1}{4\pi\varepsilon_{0}} \frac{\vec{\mu}\cdot\vec{r}}{r^{3}} \qquad \mu = \text{dipole-moment}$$

$$\varphi^{III}\left(\vec{r}\right) = \frac{1}{4\pi\varepsilon_{0}} \frac{1}{r^{3}} \int \frac{1}{2} \left[3\cos^{2}\theta - 1 \right] r^{\prime 2} \rho\left(\vec{r}\,'\right) d\vec{r}\,'$$

 $=\frac{1}{4\pi\varepsilon_0}\frac{Q(\theta)}{r^3} \qquad Q = \text{quadrupolemoment}$

Potential and field of a charge distribution

Electric field

differentiate φ with respect to \vec{r} , take minus sign:

Term I:
$$E^{I}(\vec{r}) = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r^{2}} \frac{\vec{r}}{r} = \frac{q\vec{r}}{4\pi\varepsilon_{0}r^{3}}$$

Term II: $E^{II}(\vec{r}) = \frac{1}{4\pi\varepsilon_{0}} \left[-\frac{\vec{\mu}}{r^{3}} + \frac{3\vec{r}(\vec{\mu}\cdot\vec{r})}{r^{5}} \right] = \frac{1}{4\pi\varepsilon_{0}} \frac{1}{r^{3}} \left[\frac{3\vec{r}\vec{r}}{r^{2}} - 1 \right] \cdot \vec{\mu}$

dipole tensor \vec{T}

Macroscopic description of polarisation

Continuum with relative dielectric permittivity ε_r

or susceptibility **x**

- dielectric displacement: $\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$

- polarisation: $\vec{P} = (\varepsilon_r 1)\varepsilon_0 \vec{E} = \chi \vec{E}$
- Coulomb energy:

$$U(r_i, r_j) = \frac{1}{4\pi\varepsilon_0 \varepsilon_r} \frac{q_i q_j}{|r_i - r_j|}$$

Accounting for polarisation in molecular simulation

Distinguish:

- 1. **Dipole** moment versus other **multipole** moments
 - monopole generally does not change (charge conservation)
 - dipole term then dominates expansion
- **2.** Homogeneous versus *in*homogenous fields $\vec{E} = \vec{E}(\vec{r})$ \vec{E} varies with \vec{r}
- 3. Linear versus non-linear dependence of induced moment on field \vec{E}

$$\vec{\mu} = \vec{\alpha}\vec{E}$$
 $\vec{\mu} = \vec{f}\left(\vec{E}\right)$

Accounting for polarisation in molecular simulation

Distinguish:

4. Isotropic versus anisotropic polarisation

5. Permanent dipoles versus induced dipolesgas phase due to surroundings in the condensed phase

Various approximations used

1. linear dipole polarisation in a *non*-homogeneous electric field

$$\vec{\mu}\left(\vec{E}\right) = \vec{\alpha}\vec{E} + \frac{1}{3}\vec{\alpha}'\vec{\nabla}\vec{E} + \frac{1}{15}\vec{\alpha}''\vec{\nabla}\vec{E} + \dots$$
non-uniform part, neglected in homogeneous field approximation

2. linear dipole polarisation in a homogeneous electric field

$$\vec{\mu}\left(\vec{E}\right) = \vec{\alpha}\vec{E}$$

3. non-linear dipole polarisation in a homogeneous electric field

$$\vec{\mu}(\vec{E}) = (\vec{\alpha} + \vec{\beta}\vec{E} + \frac{1}{2}\vec{\gamma}\vec{E}\vec{E} + ...)\vec{E}$$

non-linear part,
neglected in linear

response approximation

Various approximations used

4. isotropic linear dipole polarisation in a homogeneous field

$$\begin{pmatrix} \mu_{x} \\ \mu_{y} \\ \mu_{z} \end{pmatrix} = \begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix} \begin{pmatrix} E_{x} \\ E_{y} \\ E_{z} \end{pmatrix} \qquad \begin{pmatrix} \mu_{x} \\ \mu_{y} \\ \mu_{z} \end{pmatrix} = \alpha \begin{pmatrix} E_{x} \\ E_{y} \\ E_{z} \end{pmatrix}$$
tensor character, neglected in isotropic polarization approximation scalar

5. no (explicit) induced dipoles

$$\vec{\mu}^{\text{permanent}} \neq \vec{0}$$

may include mean polarisation

$$\vec{\mu}^{\text{induced}}\left(\vec{E}\right) = \vec{0}$$

neglect of induced polarisation

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms

C. Charge-on-spring (COS) models

Molecular mechanisms of polarisation

- **1. Electronic:**
- 2. Geometric:

3. Orientational:

redistribution of electrons over atoms/molecules *change of geometry* of a molecule *realignment* of molecule

Yu & van Gunsteren, Comput. Phys. Commun. 172 (2005) 69-85

W.F.van Gunsteren/Santiago de Chile 291117/25

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments

C. Charge-on-spring (COS) models

Modelling of polarisability in molecular simulation

1. Mean-field models:

implicit polarisation

permanent dipole moment of a molecule is **enhanced** from gas phase value to the condensed phase value

for example:

SPC (simple point charge) model for *liquid* water

good model for homogeneous environment, but not for *in*homogeneous surroundings

 \rightarrow H₂O bound to protein or ion or in a membrane

Modelling of polarisability in molecular simulation

2. Explicit, classical polarisation in the molecular model

Introduction of *inducible dipoles* in molecules

- more expensive
- not easy to parameterise

3. Quantum-mechanical treatment of electronic degrees of freedom

The electron density can be polarised

- not efficient for condensed phase systems
 - e.g. ionic solutions

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations

C. Charge-on-spring (COS) models

How to introduce classical, explicit polarisability into molecular models for simulation

- A. Generating induced dipoles: 3 methods
- **1.** induced point dipoles $\vec{\mu}_i$ at sites \vec{r}_i

 $\vec{\mu}_i = \boldsymbol{\alpha}_i \vec{E} \left(\vec{r}_i \right)$

2. changing the size of the (atomic) charges

$$q_j$$
 at \vec{r}_j such that $\vec{\mu}_i = \sum_i \Delta q_j \vec{r}_j = \alpha_i \vec{E}(\vec{r}_i)$

so-called fluctuation-charge models

3. changing the geometry of the charge distribution, e.g. by changing the position of virtual charge q_i^v such that

$$\vec{\mu}_i = \sum_j q_j^{\nu} \vec{r}_j^{\nu} = \alpha_i \vec{E}(\vec{r}_i)$$

for example: charge-on-spring model (COS)

How to introduce classical, explicit polarisability into molecular models for simulation

B. Choice of isotropic or anisotropic polarisation

How to introduce classical, explicit polarisability into molecular models for simulation

C. Choosing the sites of the induced dipoles

- on atoms of model
- on other sites:
 - on bonds (bond polarisability)
 - on virtual atoms

this may introduce torques

D. Avoid the polarisation catastrophe

If two **inducible dipoles** come spatially **too close to each other**, the

dipolar interaction between them mutually **enhances their** *induced*

dipoles to infinity

for example: water $r_{\rm OO} \ge \left[4\alpha^2/(4\pi\varepsilon_0)^2\right]^{\frac{1}{6}} \approx 0.144 \text{ nm}$

Remedies:

- damp polarisability at short distances
- use non-linear polarisation, e.g. $\mu = \alpha \ln(E+1)$ sublinear
- use smaller, more distributed polarisabilities

W.F.van Gunsteren/Santiago de Chile 291117/32

Considerations regarding choice of model to represent induced dipoles

Accuracy versus simplicity

1. no induced multipoles beyond dipoles

forces are already 3-rd rank tensors using point dipoles

2. monopoles (charges) are most easy to handle in schemes to

compute long-range electrostatic forces

particle-mesh schemes, virial so: fluctuation-charge or charge-on-spring models

3. rather no rigid virtual sites no anisotropy

may result in torques

4. fluctuation charge models

scaling the charges of a charge distribution does change all multipoles in a fixed ratio

5. charge-on-spring models

if q_j^{ν} is large, separation \vec{r}_j^{ν} is small **dipole approximation is good**, so, other multipoles don't change

The charge-on-spring models are the simplest realisations of polarisation

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)

C. Charge-on-spring (COS) models

Induced point dipoles: expression for the energy

Induced dipoles:

at sites of i=1,2 ... N atoms with permanent charges q_i

$$\vec{\mu}_i = \alpha_i \vec{E}_i = \alpha_i \left\{ \vec{E}_i^q + \sum_{\substack{j=1\\j\neq i}}^N \vec{T}_{ij} \vec{\mu}_j \right\}$$

$$\underline{M} = \underline{A} \Big[\underline{E}^q + \underline{T}\underline{M} \Big]$$

Electrostatic field from permanent charges:

Dipole tensor:

$$\vec{T}_{ij} = \frac{1}{4\pi\varepsilon_0} \frac{1}{r_{ij}^3} \left[\frac{3\vec{r}_{ij}\vec{r}_{ij}}{r_{ij}^2} - 1 \right]$$

Induced point dipoles: expression for the energy

Electrostatic energy:

$$U_{el} = U_{qq} + U_{ind} = U_{qq} + U_{stat} + U_{\mu\mu} + U_{self}$$
$$U_{qq} = \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq i}}^{N} \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{r_{ij}}$$
$$U_{stat} = -\sum_{i=1}^{N} \vec{\mu}_i \cdot \vec{E}_i^q$$

$$U_{\mu\mu} = -\frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\j \neq i}}^{N} \vec{\mu}_{i} \vec{T}_{ij} \vec{\mu}_{j}$$

$$U_{self} = \sum_{i=1}^{N} \int_{0}^{\vec{\mu}i} \vec{E}_{i} \cdot d\vec{\mu}_{i} = \sum_{i=1}^{N} \int_{0}^{\vec{\mu}i} \frac{\vec{\mu}_{i}}{\alpha_{i}} d\vec{\mu}_{i} = \sum_{i=1}^{N} \frac{\vec{\mu}_{i}^{2}}{2\alpha_{i}}$$

Yu & van Gunsteren, Comput. Phys. Commun. 172 (2005) 69-85

W.F.van Gunsteren/Santiago de Chile 291117/36

Induced point dipoles: expression for the forces

At equilibrium:

$$rac{\partial U_{el}}{\partial ec{\mu}_i} = 0$$
 or $ec{\mu}_i = lpha_i ec{E}_i$

Force is the negative gradient of U_{el} :

$$\vec{f}_{k} = -\frac{\partial U_{el}}{\partial \vec{r}_{k}} - \sum_{i=1}^{N} \frac{\partial U_{el}}{\partial \vec{\mu}_{i}} \cdot \frac{\partial \vec{\mu}_{i}}{\partial \vec{r}_{k}} \qquad \qquad \frac{\partial U_{el}}{\partial \vec{\mu}_{i}} = 0$$
$$= -\frac{\partial}{\partial \vec{r}_{k}} \begin{bmatrix} U_{qq} + U_{stat} + U_{\mu\mu} \\ \text{only these contribute} \end{bmatrix}$$

Induced point dipoles: expression for the forces

Force is the negative gradient of U_{el} :

$$\begin{split} \vec{f}_{k} &= q_{k}\vec{E}_{k}^{q} + \sum_{i=1}^{N} \vec{\mu}_{i} \cdot \frac{\partial \vec{E}_{i}^{q}}{\partial \vec{r}_{k}} + \sum_{i=1}^{N} \frac{\partial}{\partial \vec{r}_{k}} \left(\vec{\mu}_{i}\vec{T}_{ik}\vec{\mu}_{k} \right) \\ &= q_{k}\vec{E}_{k}^{q} + \sum_{i=1}^{N} \vec{\mu}_{i} \cdot \frac{\partial}{\partial \vec{r}_{k}} \left(\sum_{\substack{j=1\\j\neq k}}^{N} \frac{1}{4\pi\varepsilon_{0}} \frac{q_{j}\vec{r}_{ij}}{r_{ij}^{3}} \right) \\ &+ \sum_{\substack{i=1\\i\neq k}}^{N} \frac{1}{4\pi\varepsilon_{0}} \frac{3}{r_{ik}^{5}} \left\{ \frac{5}{r_{ik}^{2}} \left(\vec{\mu}_{i} \cdot \vec{r}_{ik} \right) \left(\vec{\mu}_{k} \cdot \vec{r}_{ik} \right) \vec{r}_{ik} - \left(\vec{\mu}_{i} \cdot \vec{\mu}_{k} \right) \vec{r}_{ik} - \left(\vec{\mu}_{i} \cdot \vec{r}_{ik} \right) \vec{\mu}_{k} - \left(\vec{\mu}_{k} \cdot \vec{r}_{ik} \right) \vec{\mu}_{i} \right\} \end{split}$$

if the induced dipoles $\vec{\mu}_i$ are known, force \vec{f}_k is known

Yu & van Gunsteren, Comput. Phys. Commun. 172 (2005) 69-85

W.F.van Gunsteren/Santiago de Chile 291117/38

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models

Equation for the induced dipoles or field equation

Induced dipoles:
$$\vec{\mu}_i = \alpha_i \vec{E}_i = \alpha_i \left\{ \vec{E}_i^q + \sum_{\substack{j=1 \ j \neq i}}^N \vec{T}_{ij} \vec{\mu}_j \right\}$$

Induced dipoles equation: $\vec{\mu}_i = \alpha_i \left\{ \vec{E}_i^q + \sum_{\substack{j=1 \ j \neq i}}^N \vec{T}_{ij} \vec{\mu}_j \right\}$

n:
$$\vec{E}_i = \left\{ \vec{E}_i^q + \sum_{\substack{j=1\\j\neq i}}^N \alpha_i \vec{T}_{ij} \vec{E}_j \right\}$$

Yu & van Gunsteren, Comput. Phys. Commun. 172 (2005) 69-85

W.F.van Gunsteren/Santiago de Chile 291117/40

F

Equation for the induced dipoles or field equation

Using matrix notation:

Induced dipole equation: $M = AE = A \begin{bmatrix} E^q \\ TM \end{bmatrix}$

$$\underline{M} = \underline{A}\underline{E} = \underline{A}[\underline{E} + \underline{I}\underline{M}]$$
or
$$\left[\underline{A}^{-1} - \underline{T}\right]\underline{M} = \underline{E}^{q} \quad \text{so} \quad \underline{M} = \left[\underline{A}^{-1} - \underline{T}\right]^{-1}\underline{E}^{q}$$

Yu & van Gunsteren, Comput. Phys. Commun. 172 (2005) 69-85

W.F.van Gunsteren/Santiago de Chile 291117/41

Methods to solve the field equations or to find the induced dipoles

Four methods

1. matrix inversion: invert $\left[\underline{A}^{-1} - \underline{T}\right]$

 $3N \times 3N$ matrix \rightarrow effort proportional to N^3 expensive

2. iterative solution:

$$\underline{M}^{(n)} = \underline{A} \Big[\underline{E}^q + \underline{T} \underline{M}^{(n-1)} \Big] \qquad n = 1, 2, \dots$$

3. use a prediction from previous MD steps (plus iteration) $\vec{\mu}_i(t) = 2\vec{\mu}_i(t - \Delta t) - \vec{\mu}_i(t - 2\Delta t)$

efficient method (combined with iteration)

Methods to solve field equations or to find the induced dipoles

Four methods

4. Treat $\vec{\mu}_i$ as additional dynamical variables

extended system technique:

Lagrangian such that $\langle \vec{\mu}_i \rangle = \alpha_i \langle \vec{E}_i \rangle$

$$L = \frac{1}{2} \sum_{i=1}^{N} m \vec{r}_{i}^{2} + \frac{1}{2} \sum_{i=1}^{N} M_{i}^{\mu} \dot{\vec{\mu}}_{i}^{2} - \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq 1}}^{N} \frac{1}{4\pi\varepsilon_{0}} \frac{q_{i}q_{j}}{r_{ij}}$$
$$- \sum_{i=1}^{N} \vec{\mu}_{i} \cdot \vec{E}_{i} + \sum_{i=1}^{N} \frac{\vec{\mu}_{i}^{2}}{2\alpha_{i}}$$

Small time step required, fluctuations induce dispersion forces

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models

1. Equations, parameters, non-linear polarisation

The Charge-On-Spring (COS) model

The **simplest realisation of polarisation** is the **displacement** of a **charge** q^{v} at a **virtual (massless) site** which is **restrained by** a harmonic potential (a **spring**) to one of the real (atomic) sites or to a virtual site. Of course there is no intra-molecular Coulomb interaction.

The Charge-On-Spring Model

The **virtual particle i** with charge q^v must at any time be positioned such that the **total force acting on it is zero**

Parameters of the model:

- 1. **site** *i* of charge on spring
- 2. q_i^{ν} if chosen large (-8e) then $\Delta \vec{r_i}$ small
- 3. α_i polarisability

Problems with polarisable force fields

Including polarisation in a force field can lead to overpolarisation with effects such as polarisation catastrophy and too large dielectric permittivity

Some remedies:

- A large enough repulsive van der Waals term
- *B* reduced polarisability
- C virtual COS site
- D sublinear dependence on electric field
- E several COS sites
- F screening for short distances

all COS models COS/B2, COS/G2 COS/G2, COS/D2 COS/D2 expensive

ad hoc

Yu et al., J. Chem. Phys 118 (**2003**) 221-234 Yu & van Gunsteren, J. Chem. Phys 121 (**2004**) 9549-9564 Kunz & van Gunsteren, J. Phys. Chem. A113 (**2009**) 11570-11579 Bachmann & van Gunsteren, Mol. Phys. 112 (**2014**) 2761-2780 Bachmann & van Gunsteren, J. Chem. Phys. 141 (**2014**) 22D515

Damped non-linear polarisability

Accounts for hyperpolarisability in a simplified way.

Kunz & van Gunsteren, J. Phys. Chem. A113 (2009) 11570-11579

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models

- 1. Equations, parameters, non-linear polarisation
- 2. Applications: liquid water and other solvents

An example of a *sub-atomic* water model: The COS/D2 polarisable model

• Four-site (FG) model

The **simplest realisation of polarisation** is the **displacement** of a **charge** q^{v} at a **virtual (massless) site** which is **restrained by** a harmonic potential (a **spring**) to one of the real (atomic) sites or to a virtual site.

Inducible electric dipole
$$\vec{\mu}_i = q_i^{\nu} \Delta \vec{r}_i \qquad \Delta \vec{r}_i = \vec{r}_i^{\nu} - \vec{r}_0$$

Kunz & van Gunsteren, J. Phys. Chem. A113 (**2009**) 11570-11579 Bachmann & van Gunsteren, J. Chem. Phys. 141 (**2014**) 22D515

Force-field parameters: water

non-polarisable polarisable

	Exp.	SPC	COS/G2	COS/D2
C ₆ (O-O) (10 ⁻³ kJmol ⁻¹ nm ⁶⁾		2.617	3.244	3.2444
C ₁₂ (O-O) (10 ⁻⁶ kJmol ⁻¹ nm ¹²⁾		2.634	3.458	3.252
C ₁₂ (H-H) (10 ⁻⁶ kJmol ⁻¹ nm ¹²⁾				3.0
μ ₀ (D)	1.855	2.270	1.850	1.855
α (4πε ₀ 10 ⁻³ nm ³)	1.494		1.255	1.3

			μ ₀ increased	α reduced	α reduced
•	Geometry: Virtual site M:	d _{он} : 0.095 d _{ом} : 0.024	72 nm 72 nm	< <i>HOH</i> : 104.5 (COS/G2 : 0.	;2° 022 nm)
•	Charge on spring: -8e Damping:	p:8		E ₀ : 140 (kJm	ol ⁻¹ nm ⁻³) ^{1/2}

Results: thermodynamic quantities, water

non-polarisable polarisable

			Ехр	SPC	COS/G2	CO	S/D2
ρ	(kgm ⁻³)	density	997	973	999		999
ΔH_{vap}	(kJmol ⁻¹)	heat of vaporisation	44.1	43.9	43.7		44.1
ΔF_{exc}	(kJmol ⁻¹)	excess free energy	24.0	23.6	21.8		24.3
Y	(mNm ⁻¹)	surface tension	71.6	48.4	59.0		63.6
C _p	(Jmol ⁻¹ K ⁻¹)	heat capacity	75.3	93.0	107.7		88.9
αρ	(10 ⁻⁴ K ⁻¹)	thermal expansion	4.22	9.0	7.0		4.9
κ _T	(10 ⁻⁶ atm ⁻¹)	compressibility	45.8	47.8	47.8		44.4
			ρ to γ to C _p to	oo small oo small y oo large G	ν too small C _ρ too large	γ to C _p to	o small o large

 α_p too large α_p too large

parameterised against

W.F.van Gunsteren/Santiago de Chile 291117/52

Results: dynamic quantities, water

non-polarisable polarisable

		Ехр	SPC	COS/G2	COS/D2
D	(10 ⁻⁹ m ² s ⁻¹) diffusion constant	2.3	4.2	2.0	2.2
τ2 ^{ΟΗ}	(ps) rotational correlation time	1.95	1.9	3.9	3.8

D too large τ_2^{OH} too large τ_2^{OH} too large

Results: electric quantities, water

non-polarisable polarisable

		Exp.	SPC	COS/G2	COS/D2
ε(0)	dielectric permittivity	78.4	64.7	87.8	78.9
<µ> (D)	total molecular dipole	2.3 – 2.5	2.27	2.61	2.55
<µ ^{ind} > (D) induced molecular dipole	-	-	0.80	0.73
τ _D (ps)	Debye relaxation time	8.3	6.9	15.8	8.4

 $\varepsilon(0)$ too small $\varepsilon(0)$ too large τ_D too small τ_D too large

Properties of non-polarisable and polarisable liquid chloroform *CHCl*₃

Properties	Experiment	Non-polarisable model (G96) 4 sites	Polarisable model (COS/C) 5 sites
ρ (kgm ⁻³) density	1489	1504	1489
ΔH_{vap} (kJmol ⁻¹) heat of vaporisation	33.4	31.2	33.3
ΔF_{exc} (kJmol ⁻¹) excess free energy	15.3	15.1	16.6
γ (10 ⁻³ Nm ⁻¹) surface tension	27.2	25.8	28.7
C_V (Jmol ⁻¹ K ⁻¹) heat capacity	74.7	71.7	73.5
α_p (10 ⁻³ K ⁻¹) thermal expansion	1.26	1.44	1.29
κ_{T} (10 ⁻¹⁰ Pa ⁻¹) compressibility	9.98	14.2	9.2
$\boldsymbol{\varepsilon}(0)$ dielectric permittivity $\boldsymbol{\varepsilon}(\infty)$	4.81	2.3	3.7 1.2
$ au_D$ (ps) Debye relaxation time	5.4	4.3	5.6
$D (10^{-9} \mathrm{m^2 s^{-1}})$ diffusion	2.3	2.4	2.2
η (cP) viscosity	0.56	0.48	0.55

parametrised against

Overall "better" model

Z. Lin et al., Mol. Phys. 108 (**2010**) 1749-1757 *I.G. Tironi & WFvG, Mol Phys.* 83 (**1994**) 381-403

W.F.van Gunsteren/Santiago de Chile 291117/55

Properties of non-polarisable and polarisable liquid CCI₄

Properties	Experiment	Non-polarisable model (G96) 4 sites (smaller system)		Polarisable model (COS/C) 5 sites (longer simulation)	
ρ (kgm ⁻³) density	1594		1601		1600
ΔH_{vap} (kJmol ⁻¹) heat of vaporisation	32.4		32.4		32.4
ΔF_{exc} (kJmol ⁻¹) excess free energy	16.3		15.8		15.8
γ (10 ⁻³ Nm ⁻¹) surface tension	26.8		28.8		28.8
$\boldsymbol{\epsilon}(0)$ dielectric permittivity	2.24		1.0		2.24
D (10 ⁻⁹ m ² s ⁻¹) diffusion	1.15		1.8		1.9
η (cP) viscosity	0.96		0.88		0.88

Better representation of dielectric response

A.P.E. Kunz et al., Mol. Phys. 109 (**2011**) 365-372 I.G. Tironi et al., Mol Sim. 18 (**1996**) 1-11

W.F.van Gunsteren/Santiago de Chile 291117/56

parametrised against

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models

- 1. Equations, parameters, non-linear polarisation
- 2. Applications: liquid water and other solvents
- **3. Applications: secondary structure preferences of solutes**

Stabilisation of α-helical versus β-hairpin secondary structure by polarisability of the solvent

A deca-Ala-peptide in water, methanol, chloroform or CCl₄

Free enthalpy difference between *helix* and *hairpin* upon introduction of polarisability into the *solvent*

	$H_3 H H H H H H H H H H H H H H H H H H $	Solvent	Free enthalpy difference (G ^α _{pol} -G ^α _{nonpol})-(G ^β _{pol} -G ^β _{nonpol}) [kJ mol ⁻¹]	Per residue [kJmol ⁻¹]	Molecular polarisability α [(4πε ₀)10 ⁻³ nm ³]
Ĥ	Ö	water	0.5 ± 3.7	0.0	0.93
		methanol	-11.5 ± 3.5	-1.1	1.32
	[]	chloroform	-10.2 ± 1.4	-1.0	9.5
		CCI4	-21.0 ± 0.6	-2.1	11.1
	77				

Polarisability becomes more important for non-polar solvents or environments, e.g. tails of lipids in membranes

Z. Lin & WFvG, J. Chem. Theory Comput. 11 (2015) 1983-1986

A. Why polarisability ?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models

- 1. Equations, parameters, non-linear polarisation
- 2. Applications: liquid water and other solvents
- **3. Applications: secondary structure preferences of solutes**

Accounting for polarisation effects in bio-molecular simulation

For bio-molecular solutes: proteins, DNA, RNA, ...

use quantum-chemical models, classical polarisability models are too crude to properly represent the electron redistribution

For solvents and lipids in membranes:

use classical (Charge-On-Spring) models, quantum-chemical models are too expensive or inaccurate

Spatial distribution of licences GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: <u>http://www.gromos.net</u>

W.F.van Gunsteren/Santiago de Chile 291117/61