International Spring School Statistical Thermodynamics, Santiago de Chile Thursday, November 30, 2017 Lecture 23

Treatment of quantum effects: hybrid QM/MM simulation

Prof. Dr. Wilfred F. van Gunsteren ETH Zürich, Switzerland

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Car-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Different levels of resolution in modelling

Coarse-graining from a finer-grained level to a coarser-grained level of resolution

Quantum (statistical) mechanics

Classical (statistical) mechanics

Level of resolution	1	П	ш	IV	v
Particles	Sub-nuclear particles: nucleons + electrons	Sub-atomic particles: nuclei + electrons	Atomic particles	Supra-atomic particles	Supra-molecular particles
Mass of particle (amu)	10 ⁻³ - 1	10 ⁻³ - 10 ²	$1 - 10^{2}$	$10 - 10^2$	$10 - 10^2$
Size of particle (nm)	10 ⁻⁶	10 ⁻⁶ – 10 ⁻⁵	0.03 – 0.3	0.5 – 1.0	0.5 - 1.0
Interactions	Strong, Coulomb, Pauli principle	Coulomb, Pauli principle	bonded terms, Coulomb, repulsive, van der Waals		Coulomb, repulsive, van der Waals
Scaling effort	$N_{nucleons}^{\geq 3}$	$N_{electrons}^{\geq 3}$	N_{atoms}^{1-2}	N_{beads}^{1-2}	N_{beads}^{1-2}
Reduction number of degrees of freedom <i>from previous level</i>		10 - 100	10-100	2 – 5	2 – 10
Reduction computational effort <i>from previous level</i>		≥ 10 ³	≥ 10 ³	2 – 25	2 – 100

Riniker et al. Phys. Chem. Chem. Phys. 14 (**2012**) 12423-12430 Meier et al., Angew. Chem. Intl. Ed. 52 (**2013**) 2-17

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- **1. Quantum effects**
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Car-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Quantum effects

Quantisation of energy levels

vibrations with $\hbar \omega > k_{\rm B}T$ zero point energy: $\frac{1}{2}\hbar\omega$ harmonic oscillator

Atomic degrees of freedom

bond vibrations angle vibrations water libration $k_B T$

3700cm⁻¹ 1600cm⁻¹ 500cm⁻¹ 200cm⁻¹

- Exchange **Bose-Einstein** Fermi-Dirac
 - statistics

Uncertainty tunneling

no defined trajectory

liquid Helium Boltzmann statistics generally O.K.

proton transfer

Quantum effects

- Non pair additivity
- polarisation
- charge transfer

Electronic degrees of freedom

- metals
- semiconductors
- ionic crystals
- hydrated electron

→ • Change of chemical bonds

- electron transfer reactions

→ • Relaxation processes

Types of quantities:

- thermodynamic
- structural
- dynamic

Energy transfer from excited molecules

Essential quantum systems:

- spin
- liquid He

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Car-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Main differences between quantum and classical mechanics as applied to molecular systems

	Quantum statistical mechanics (QM)		Classical statistical mechanics (CM)
•	time-dependent Schrödinger equation: $i\hbar \frac{\partial \Psi(\vec{r}^N,t)}{\partial t} = \widehat{H}\Psi(\vec{r}^N,t)$ with wave function Ψ	•	Newton's equation: $\vec{f_i} = m_i \ \vec{a_i}$ $\vec{f_i} = -\frac{\partial V(\vec{r}^N)}{\partial \vec{r_i}}$
•	Born-Oppenheimer approximation: nuclei and electrons decoupled	•	interaction potential energy function $V(\vec{r}^N)$ is generally pair additive, but polarisation can be included
•	probabilistic nature of wave function: $ \Psi(\vec{r_i}, t) ^2$, uncertainty principle, no trajectory	•	phase space trajectory \vec{r}^N , \vec{p}^N
•	Bose-Einstein or Fermi-Dirac statistics (Pauli principle: anti-symmetry)	•	Boltzmann statistics
•	Computing effort: (number of electrons) ³⁻⁵	•	Computing effort: (number of atoms) ¹⁻²

Theoretical molecular chemistry

Distinctions:

- Quantum mechanics (QM) ground state equilibrium
- ← Classical mechanics (CM)
 - → excited state
- ←→ dynamics

Degrees of freedom: atoms/nuclei

Classification of molecular simulation theory and methods

	Quantum statistical mechanics	Classical statistical mechanics	
	1. One single configuration: Static		Static
,	QM: time-independent	CM: energy minimization	modelling
	Schrödinger equation		mouening
	T = 0	T = 0	
	• ab-initio	• (empirical) force field	
	\bullet density-functional		
	• semi-empirical		
	\bullet empirical valence bond		
	2. Ensemble of configurations: Equil	ibrium statistical mechanics	Equilibrium
	QM: density matrices	CM: Boltzmann sampling	statistical
	$T \neq 0$	$T \neq 0$	statistical
	• path-integral simulation	• force field	mechanics
		• Monte–Carlo simulation	
		• molecular dynamics simulation	
		• stochastic dynamics simulation	
	2. Trajectories of configurations: Dy	namics	Dvnamics
	QD: time-dependent	CD: Newton, Lagrange, Hamilton,	
	Schrödinger equation	Langevin equations	
	$T \neq 0 + \text{dynamics}$	$T \neq 0 + dynamics$	
	• wave function propagation	• force field	
	• density matrix evolution	• molecular dynamics simulation	
	\bullet real-time path integral	• stochastic dynamics simulation	
	• Bohmian dynamics		
	• surface hopping		

W.F.van Gunsteren/Santiago de Chile 301117/10

Methods/Applications

1.	Conventional Quantum Chemistry $(1960 \rightarrow)$	Atoms/Nuclei Fixed: T = 0 K no dynamics	Electrons QM: Schrödinger ground + excited equilibrium → no dynamics
2.	Conventional Classical Simulation $(1970 \rightarrow)$	CM : atoms Newton: T = 300K dynamics	averaged out no reactions
3.	`Ab-initio` Simulation (1985 →)	CM : nuclei Newton: T = 300K dynamics	QM: ab initio density functional valence bond semi-empirical only ground state no dynamics

Methods/Applications

- 4. Hybrid QM/MM
 Simulation
 (HIV-protease)
 (1990 →)
- 5. Path-Integral Simulation (water) $(1990 \rightarrow)$

Atoms/Nuclei **CM**: nuclei + atoms Newton: T = 300K **dynamics**

QM: atoms equilibrium Electrons

QM: as under 3. for few atoms

only ground state no dynamics

Averaged out

6. Hybrid QMD/CMD
 Dynamic Simulation
 (proton transfer)
 (1993 →)

QM: few atoms Average Schrödinger: dynamics, ground + excited states CM: many atoms Newton: T = 300K dynamics

Averaged out

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Carr-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Hybrid Quantum/Classical Simulation

Combination:	Quantum	+	Classical
	few	+	many
			degrees of freedom
	semi-empirical	+	Newton
	QM: AM1		GROMOS force field
	PM3		
	OM3		
	DFT		

- Quantum Hamiltonian must include long-range electric field due to classical Hamiltonian
- 2. Classical Hamiltonian must account for changing charge distribution of the quantum Hamiltonian

Hamiltonian:

$$\hat{H} = \sum_{I}^{M} \frac{P_{I}^{2}}{2m_{I}} + \sum_{A}^{N} \frac{P_{A}^{2}}{2m_{A}} + V_{\text{solvent/solvent}}\left(\left\{R_{I}\right\}\right)$$
$$+ V_{\text{core/core}}\left(\left\{R_{A}\right\}\right) + V_{\text{solvent/core}}\left(\left\{R_{I}\right\}, \left\{R_{A}\right\}\right)$$
$$+ \hat{H}_{\text{electron}}$$

- *I*, *J*: solvent atoms
- *A*, *B*: atomic cores = nuclei plus inner shell electrons
- *i*, *j*: valence shell electrons

H. Liu et al., J. Chem. Phys., 102 (**1995**) 1722-1730 K. Meier et al., J. Comput. Chem. 33 (**2012**) 1153-1161

Solvent-solvent potential energy function:

$$V_{\text{solvent/solvent}}\left(\left\{R_{I}\right\}\right) = \sum_{I}^{M} \sum_{J>I}^{M} \frac{Q_{I}Q_{J}}{R_{IJ}} + \sum_{I}^{M} \sum_{J>I}^{M} 4\varepsilon_{IJ} \left(\frac{\sigma_{IJ}^{12}}{R_{IJ}^{12}} - \frac{\sigma_{IJ}^{6}}{R_{IJ}^{6}}\right)$$

 Q_I , Q_J : partial charges ε_{IJ} , σ_{IJ} : Lennard-Jones parameters

Interactions between the atomic cores of the solute:

$$V_{\text{core/core}}\left(\left\{R_{A}\right\}\right) = \sum_{A}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}}$$

 Z_I, Z_J : effective charges of the atomic cores

H. Liu et al., J. Chem. Phys., 102 (**1995**) 1722-1730 K. Meier et al., J. Comput. Chem. 33 (**2012**) 1153-1161

Interactions between the solvent atoms and the solute atomic cores:

$$V_{\text{solvent/core}}\left(\left\{R_{I}\right\},\left\{R_{A}\right\}\right) = V_{\text{electrostatic}}\left(\left\{R_{I}\right\},\left\{R_{A}\right\}\right) + V_{\text{van der Waals}}\left(\left\{R_{I}\right\},\left\{R_{A}\right\}\right)$$

van der Waals part:

$$V_{\text{van der Waals}}\left(\left\{R_{I}\right\},\left\{R_{A}\right\}\right) = \sum_{I}^{M} \sum_{A}^{N} 4\varepsilon_{IA} \left(\frac{\sigma_{IA}^{12}}{R_{IA}^{12}} - \frac{\sigma_{IA}^{6}}{R_{IA}^{6}}\right)$$

electrostatic part:

$$V_{\text{electrostatic}}\left(\left\{R_{I}\right\},\left\{R_{A}\right\}\right) = \sum_{I}^{M} \sum_{A}^{N} \frac{Q_{I}Z_{A}}{R_{IA}}$$

H. Liu et al., J. Chem. Phys., 102 (**1995**) 1722-1730 K. Meier et al., J. Comput. Chem. 33 (**2012**) 1153-1161

Electronic part of the Hamiltonian:

$$\hat{H}_{\text{electron}} = -\sum_{i}^{n} \frac{\nabla_{i}^{2}}{2} + \sum_{i}^{n} \sum_{j>i}^{n} \frac{1}{r_{ij}} - \sum_{i}^{n} \sum_{I}^{M} \frac{Q_{I}}{R_{iI}} - \sum_{i}^{n} \sum_{A}^{N} \frac{Z_{A}}{R_{iA}}$$

Born-Oppenheimer approximation \rightarrow motion of the solvent atoms and

motion of the solvent atoms and solute atomic cores can be described classically

Effective potential energy term due to the electrons:

$$V_{\text{electron}} = \left\langle \Psi \right| \hat{H}_{\text{electron}} \left(\left\{ R_{I} \right\}, \left\{ R_{A} \right\} \right) \right| \Psi \right\rangle$$

H. Liu et al., J. Chem. Phys., 102 (**1995**) 1722-1730 K. Meier et al., J. Comput. Chem. 33 (**2012**) 1153-1161

1.2-Dimethoxyethane CH₃-O-CH₂-CH₂-O-CH₃

H. Liu et al., J. Chem. Phys., 102 (1995) 1722-1730

Dimethoxyethane, tg⁺g⁻ conformer internal "hydrogen bond"

Without explicit solvent correct conformation is not found

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Car-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Quantum simulation: Car-Parrinello method

Remlen & Madden, Mol. Phys. 70 (1990) 921

R, **Atomic (core) degrees of freedom:**

- Velocities: $\dot{\vec{R}}_i = \frac{d}{dt} \vec{R}_i$
- Lagrangian: $L = T V = \frac{1}{2} \sum_{i=1}^{N} M_i \dot{\vec{R}}_i^2 V_{at} \left(\left\{ \vec{R}_i \right\} \right)$

- Equation of motion:
$$m_i \vec{R}_i = -\frac{\partial}{\partial \vec{R}_i} V_{at} \left(\vec{R}_1, \dots, \vec{R}_N \right)$$

C_{β}^{α} **Electronic degree of freedom:**

- Dasis: $\varphi_{\beta}(\vec{r})$ Occupied orbital: $\psi_{\alpha}(\vec{r})$

- Velocities:
$$\dot{c}^{\alpha}_{\beta} = \frac{d}{dt} c^{\alpha}_{\beta} \qquad \psi_{\alpha} \left(\vec{r} \right) = \sum_{\beta} c^{\alpha}_{\beta} \varphi_{\beta} \left(\vec{r} \right)$$

- Lagrangian: $L = T - V = \frac{1}{2} \mu \sum_{\alpha} \sum_{\beta} \left(\dot{c}^{\alpha}_{\beta} \right)^2 - V_{el} \left(\left\{ c^{\alpha}_{\beta} \right\}, \left\{ \vec{R}_{i} \right\} \right)$

Quantum simulation: Car-Parrinello method

$$\sigma_{\alpha\alpha'} = \frac{1}{\operatorname{norm}} \int \psi_{\alpha}^{*}(\vec{r}) \psi_{\alpha'}(\vec{r}) d\vec{r} - \delta_{\alpha\alpha'} = 0$$
$$= \sum_{\beta} c_{\beta}^{\alpha*} c_{\beta}^{\alpha'} - \delta_{\alpha\alpha'} = 0$$

Can be handled like a distance constraint: $\vec{R}_{ij} \cdot \vec{R}_{ij} - d_{ij}^2 = 0$

Lagrangian multipliers: λ_{ij}

- Constraint force:
- Equation of motion:

$$\begin{array}{l} \dot{\lambda}_{\alpha\alpha'} \cdot \frac{\partial \sigma_{\alpha\alpha'}}{\partial \boldsymbol{C}^{\alpha}_{\beta}} \\ \mu \ddot{\boldsymbol{C}}^{\alpha}_{\beta} = -\frac{\partial V_{el}}{\partial \boldsymbol{C}^{\alpha}_{\beta}} - \sum_{\alpha'} \lambda_{\alpha\alpha'} \cdot \boldsymbol{C}^{\alpha}_{\beta} \end{array}$$

Combine MD in both spaces:

- Lagrangian:

$$L = \frac{1}{2} \sum_{i=1}^{N} M_{i} \dot{\vec{R}}_{i}^{2} + \frac{1}{2} \mu \sum_{\alpha} \sum_{\beta} \dot{c}_{\beta}^{\alpha 2} - V_{at} \left(\left\{ \vec{R}_{i} \right\} \right) - V_{el} \left(\left\{ c_{\beta}^{\alpha} \right\}, \left\{ \vec{R}_{i} \right\} \right)$$

Combine MD in both spaces:

degrees of freedom

- Lagrangian:

$$L = \frac{1}{2} \sum_{i=1}^{N} M_{i} \quad \dot{\vec{R}}_{i}^{2} - \frac{1}{2} \mu \sum_{\alpha} \sum_{\beta} \left(\dot{c}_{\beta}^{\alpha} \right)^{2} - V_{at} \left(\left\{ \vec{R}_{i} \right\} \right) - V_{el} \left(\left\{ c_{\beta}^{\alpha} \right\}, \left\{ \vec{R}_{i} \right\} \right)$$

- Equations of motion:

atomic:
$$m_{i} \ddot{\vec{R}}_{i} = -\frac{\partial}{\partial \vec{R}_{i}} V_{at} - \frac{\partial}{\partial \vec{R}_{i}} V_{el}$$

electronic: $\mu \ddot{C}^{\alpha}_{\beta} = -\frac{\partial}{\partial C^{\alpha}_{\beta}} V_{el} - \sum_{\alpha'} \lambda_{\alpha\alpha'} C^{\alpha}_{\beta}$

- Hellmann-Feynman theorem:

If Ψ is a stationary wave function then:

force
$$\vec{f}_{i} \equiv -\frac{\partial V_{el}}{\partial \vec{R}_{i}} = -\left\langle \Psi\left(\vec{r}, \vec{R}\right) \left| \frac{\partial \hat{H}}{\partial \vec{R}_{i}} \right| \Psi\left(\vec{r}, \vec{R}\right) \right\rangle$$

For non-stationary states: Chem. Phys. Lett. 219 (1994) 259-266

force
$$\vec{f}_{i} = -\sum_{\alpha} \langle \Psi | \psi_{\alpha} \rangle \langle \psi_{\alpha} | \frac{\partial \hat{H}}{\partial \vec{R}_{i}} | \psi_{\alpha} \rangle \langle \psi_{\alpha} | \Psi \rangle - \sum_{\alpha} E_{\alpha} \frac{\partial}{\partial \vec{R}_{i}} \langle \Psi | \psi_{\alpha} \rangle \langle \psi_{\alpha} | \Psi \rangle$$

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Carr-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Path-integral method

Consider one particle in one dimension:

Hamiltonian:

Density matrix:
$$\rho(x, x'; \beta) = \sum_{\lambda} \psi_{\lambda}(x) e^{-\beta E_{\lambda}} \psi_{\lambda}^{*}(x') \qquad \beta \equiv \frac{1}{k_{B}T}$$

Partition function: 1 particle in volume V

$$Z(1,V,\beta) = \sum_{\lambda} e^{-\beta E_{\lambda}} = \int \rho(x,x;\beta) dx$$

Decomposition of the density matrix:

$$\int \rho(x, x''; \frac{1}{2}\beta) \rho(x'', x', \frac{1}{2}\beta) dx'' =$$

$$= \int \left[\sum_{\lambda} \psi_{\lambda}(x) e^{-\frac{1}{2}\beta E_{\lambda}} \psi_{\lambda}^{*}(x'') \right] \left[\sum_{\lambda'} \psi_{\lambda'}(x'') e^{-\frac{1}{2}\beta E_{\lambda'}} \psi_{\lambda'}^{*}(x') \right] dx''$$

= integral over $\mathbf{X}^{"} \Rightarrow \delta_{\lambda\lambda'}$

$$= \sum_{\lambda} \psi_{\lambda} (\mathbf{X}) e^{-\beta E_{\lambda}} \psi_{\lambda}^{*} (\mathbf{X}') = \rho (\mathbf{X}, \mathbf{X}'; \boldsymbol{\beta})$$

'M. J. Gilla

an, in Computer Modelling of Fluids, Polymers and Solids, edited by C. R. A. Catlow, S. C. Parker, and M. P. Allen (Kluwer, Dordrecht, 1990), pp. 155-188.

Path-integral method

Partition function with P decompositions: $Z_{P}(1, V, \beta) = \int \int \dots \int \rho(x_{1}, x_{2}; \beta/P) \rho(x_{2}, x_{3}; \beta/P) \dots$ $\dots \rho(x_{P-1}, x_{P}; \beta/P) \rho(x_{P}, x_{1}; \beta/P) dx_{1} dx_{2} \dots dx_{P}$

A closed path integral: $\rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow ... \rightarrow P \neg$

Derive an expression for \rho(\mathbf{x}, \mathbf{x}'; \boldsymbol{\beta}/\mathbf{P}) for large P: \rho(\mathbf{x}, \mathbf{x}'; \boldsymbol{\beta}) = \sum \psi_{\lambda}(\mathbf{x}) e^{-\beta E_{\lambda}} \psi_{\lambda}^{*}(\mathbf{x}')

Take derivative with respect to β :

$$\frac{\partial}{\partial\beta}\rho(x,x';\beta) = -\sum_{\lambda} \underbrace{E_{\lambda}\psi_{\lambda}(x)}_{\hat{H}\psi_{\lambda}(x)} e^{-\beta E_{\lambda}}\psi_{\lambda}^{*}(x') = -\left[-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}} + V(x)\right]\rho(x,x';\beta)$$

Assume V(x) = 0:

$$\frac{\partial}{\partial\beta}\rho(x,x';\beta) = \frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\rho(x,x';\beta)$$

This is a diffusion equation with:

time = t = β diffusion constant = D = $\frac{\hbar^2}{2m}$

Path-integral method

Solution:

$$\rho(x, x'; \beta) = \left[\frac{m}{2\pi\beta\hbar^2}\right]^{\frac{1}{2}} e^{-\frac{m}{2\beta\hbar^2}[x-x']^2}$$

Assume V(x) = constant:

$$\rho(x, x'; \beta) = \left[\frac{m}{2\pi\beta\hbar^2}\right]^{\frac{1}{2}} e^{\frac{m}{2\beta\hbar^2}[x-x']^2 - \beta V(x)}$$

Dominates for small β
So, V(x) \approx constant

Use mean of V(x) and V(x'): $\frac{1}{2}[V(x) + V(x')]$

Single-particle, 1-dimensional density matrix for large P:

$$\rho(x,x';\beta/P) = \left[\frac{mP}{2\pi\beta\hbar^2}\right]^{\frac{1}{2}} e^{-\frac{mP}{2\beta\hbar^2}[x-x']^2 - \frac{\beta}{2P}[V(x)+V(x')]}$$

Partition function in terms of path integrals

One particle, one dimension:

$$Z_{P}(1,V,\beta) = \left[\frac{mP}{2\pi\beta\hbar^{2}}\right]^{\frac{P}{2}} \int \int \dots \int e^{-\beta\sum_{s=1}^{P} \left[\frac{mP}{2\beta^{2}\hbar^{2}} \left[x_{s+1} - x_{s}\right]^{2} + \frac{1}{P}V(x_{s})\right]} dx_{1} dx_{2} \dots dx_{P}$$

One can show (Feynman, Statistical Mechanics):

$$Z(1,V,\beta) = \lim_{\rho \to \infty} Z_{\rho}(1,V,\beta)$$

Isomorphism:

Partition function of a **quantum particle** has the form of the configurational partition function of a cyclic chain of P **classical particles** (or **beads**) **coupled by harmonic springs** with spring constant $\frac{mP}{B^2\hbar^2}$

Each particle (bead) being acted on by the **true potential V(x) divided by** P.

N particles, 3 dimensions:

$$Z_{P}(N,V,\beta) = \left[\frac{mP}{2\pi\beta\hbar^{2}}\right]^{\frac{3NP}{2}} \int e^{-\beta\sum_{s=1}^{P}\left[\frac{mP}{2\beta^{2}\hbar^{2}}\sum_{i=1}^{N}\left[\vec{r}_{i,s+1}-\vec{r}_{i,s}\right]^{2}+\frac{1}{P}V(\vec{r}_{i,s},...,\vec{r}_{N,s})\right]} \prod_{i=1}^{N}\prod_{s=1}^{P}d\vec{r}_{i,s}$$

 $\vec{r}_{i,s}$ = position vector of bead **s** on chain representing particle **i** W.F.van Gunsteren/Santiago de Chile 301117/30

Quantum partition function

Quantum partition function:

$$Z_{N_{b}} = \left[\frac{k_{B}TN_{b}}{2\pi\hbar^{2}}\right]^{3N_{Q}N_{b}/2} \prod_{j=1}^{N_{Q}} (m_{j})^{3N_{b}/2} \int \exp\{-\sum_{n=1}^{N_{b}} \left[\frac{(k_{B}T)^{2}N_{b}}{2\hbar^{2}}*\right]^{N_{b}} \\ \sum_{i=1}^{N_{Q}} m_{i} \left(\vec{r}_{i,n+1} - \vec{r}_{i,n}\right)^{2} + N_{b}^{-1}V\left(\vec{r}_{1,n},\vec{r}_{2,n},\dots,\vec{r}_{N_{Q},n};s\right) / k_{B}T\} \prod_{i=1}^{N_{Q}} \prod_{n=1}^{N_{b}} d\vec{r}_{i,n}$$

Two quantum atoms i and j,

represented by two rings of N_b beads. The position of bead n on ring i is denoted by $r_{i,n}$. The wiggly lines represent the harmonic interaction between neighbouring beads on a ring. The **arrows** indicate the **scaled interaction** between beads on different rings having the same bead index n.

Harmonic springs:

Scaled interaction:

 $\frac{1}{2} \frac{(k_{B}T)^{2} N_{b}m_{i}}{\hbar^{2}} (\vec{r}_{i,n+1} - \vec{r}_{i,n})^{2}$

 $N_{b}^{-1}V(\vec{r}_{1,n},\vec{r}_{2,n},...,\vec{r}_{N_{o},n};s)$

Quantum partition function

A **quantum atom i** represented by a ring of beads with positions

 $\mathbf{r}_{i,n}$ (n = 1,2,...,N_b) and a **classical atom j** with position **r**_i. The **wiggly lines** represent the harmonic interaction between neighbouring beads on a ring. The **arrows** indicate the scaled interaction of the beads with the classical atom.

Classical limit:

- high temperature T
 large masses m_i
- small Planck's constant ħ

Quantum limit:

Chain shrinks

Chain spreads out

³M. J. Gillan, in Computer Modelling of Fluids, Polymers and Solids, edited by C. R. A. Catlow, S. C. Parker, and M. P. Allen (Kluwer, Dordrecht, 1990), pp. 155-188.

Radial distribution function for liquid Neon

at low temperature

Cubic periodic box with 216 or 512 water molecules

S.R. Billeter et al., J.Chem.Phys. 100 (1994) 6692-6699

(N,P,T) SPC/E model Path-integral: N = 216, 50 + 400 "psecs" Classical: N = 512, 40 +100 psecs

Methods:

- **1.** Minimum volume in (N,P,T)
- 2. Minimum pressure in (N,V,T)
- 3. Energy-volume correlation:

 $\langle \Delta E \Delta V \rangle_{T=T_{max}} = 0$

Experiment: H₂O 277K (4°C) D₂O 284K (11°C) classical limit 291K (18°C)

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Carr-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Quantum-dynamical (QD) simulation

Why proton transfer simulation?

- Almost all biomolecules are protolytes
- Protein structure depends on pH
- A "local pH" is not measurable

Why QM for protons?

- De Broglie wavelength

$$\Lambda = \left[\frac{\hbar^2}{mk_BT}\right]^{1/2} \approx 1\text{\AA}$$

- Experiment: isotope effects

Why QD (dynamics) for protons?

- Excited states are accessible at room temperature
- Proton transfer very fast

Methods for quantum dynamical simulation

- Wave function propagation
- Density matrix evolution
- Surface hopping
- Bohmian dynamics

- ...

Quantum-dynamical simulation Wave function propagation the basic assumptions

• Schrödinger dynamics:

$$i\hbar\frac{\partial}{\partial t}\left|\psi_{s}\left(t\right)\right\rangle=\widehat{H}_{s}\left(t\right)\left|\psi_{s}\left(t\right)\right\rangle$$

• Separation of the state: _____ proton(s)

$$\psi_{s}(X,x,t) = \psi(x,t) \cdot \psi_{e}(X,t)$$

environment:
 protein & water

• Schrödinger motion of the proton:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \widehat{H}(X(t)) |\psi(t)\rangle$$

• Newtonian motion of the environment:

$$m_i \frac{d^2}{dt^2} X_i(t) = f_i(t)$$

Hybrid QD/MD simulation

S.R. Billeter & WFvG, Comp. Phys. Comm. 107 (1997) 61-91

1. Technical aspects

A. Propagation of the wave function

$$|\psi(t)\rangle = \hat{G}(t)|\psi(0)\rangle = \hat{T}e$$

 $\hat{T}e^{-\frac{1}{\hbar}\int_{0}^{t}dt'\hat{H}(t)}\left|\psi(0)\right\rangle$

Time ordering operator

Compare 10 different methods

Best: Eigenstate expansion Chebisheff series expansion

B. QD/MD time integration schemes

- Standard
- Guessed leap-frog
- Enhanced guessed leap-frog

C. Forces on classical atoms due to quantum subsystem

- Standard Hellmann-Feynman forces
- Simple extended HF forces
- Extended HF forces

D. Representation of the quantum subsystem

- 1 versus 3 dimensions
- Number of basis points
- Moving the classical reference frame

Hybrid QD/MD simulation

2. The potential function for a proton

- Direct proton-water/acid terms
- Lennard-Jones with configuration-dependent parameters ϵ and σ
- Polarisation terms
- Easily generalisable S.R. Billeter & WFvG, J. Phys. Chem. A 102 (**1998**) 4669

3. Results: proton transfer between acid and water

- Quantum dynamic effects
- Role excited states of the proton
- Transfer rates

The proton and its neighbours

Proton potential energy operator 216 molecules

Protonated liquid SPC/E water, LJ force field, snapshots

W.F.van Gunsteren/Santiago de Chile 301117/42

S.R. Billeter & WFvG, J. Phys. Chem. A 102 (1998) 4669-4678

QD/MD simulation of protonated liquid water 216 molecules

Population as function of time: occupation of states

S.R. Billeter & WFvG, J. Phys. Chem. A 102 (1998) 4669-4678

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Car-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Quantum-dynamical (QD) simulation

Why proton transfer simulation?

- Almost all biomolecules are protolytes
- Protein structure depends on pH
- A "local pH" is not measurable

Why QM for protons?

- De Broglie wavelength

$$\Lambda = \left[\frac{\hbar^2}{mk_BT}\right]^{1/2} \approx 1\text{\AA}$$

- Experiment: isotope effects

Why QD (dynamics) for protons?

- Excited states are accessible at room temperature
- Proton transfer very fast

Methods for quantum dynamical simulation

- Wave function propagation
- Density matrix evolution
- Surface hopping
- Bohmian dynamics

- ...

Quantum-dynamical simulation

Density matrix evolution method

Berendsen & Mavri, J. Phys. Chem. 97 (**1993**) 13464-13468 Phys. Rev. E 50 (**1994**) 198-204

Degrees of freedomQMCMCoordinates $\hat{\xi}$ \hat{q} Conjugate momenta $\hat{\pi}$ \vec{p} Hamiltonian $\hat{H}(\vec{p}, \vec{q}, \hat{\pi}, \hat{\xi})$ $H_{\alpha\alpha'}(\vec{p}, \vec{q}) = \langle \psi_{\alpha} | \hat{H}(\vec{p}, \vec{q}, \hat{\pi}, \hat{\xi}) | \psi_{\alpha'} \rangle$ QM basis (orthonormal): $\psi_{\alpha}(\xi)$

Solution time-dependent Schrödinger equation in terms of basis:

$$\Psi(\xi,t) = \sum_{\alpha} c_{\alpha}(t) \psi_{\alpha}(\xi) \rightarrow c_{\alpha} = \left\langle \psi_{\alpha} \right| \Psi \right\rangle$$

Density matrix:

$$p_{\alpha\alpha'} = C_{\alpha}C_{\alpha'}^*$$

Quantum-dynamical simulation: density matrix evolution

Time evolution or equation of motion:

QM:
$$\frac{d\rho_{\alpha\alpha'}}{dt} = \frac{i}{\hbar} \Big[\rho H(\vec{p}, \vec{q}) - H(\vec{p}, \vec{q}) \rho \Big]_{\alpha\alpha'}$$

CM:
$$\frac{d\vec{q}}{dt} = Trace \left(\rho \frac{\partial H(\vec{p}, \vec{q})}{\partial \vec{p}} \right), \qquad \frac{d\vec{p}}{dt} = Trace \left(\rho \frac{\partial H(\vec{p}, \vec{q})}{\partial \vec{q}} \right) \begin{cases} \text{integrate} \\ \text{numerically} \\ \text{QMD} \end{cases}$$

Expectation value of observable Â:

QM: $Trace(\rho A) = \sum_{\alpha} (\rho A)_{\alpha\alpha}$ **CM:** $\langle Trace(\rho A) \rangle$ **CM ensemble**

QD: N_2 in CD: 79 Argon atoms at T = 1000K

Berendsen & Mavri, Phys. Rev. E50 (1994) 198-204

FIG. 2. Time evolution of the diagonal elements of the density matrix for a three level quantum harmonic oscillator in a dense Ar bath at 1000 K (79 Ar atoms in a simulation box of 15 Å \times 15 Å \times 15 Å): ground state ρ_{00} (a), first excited state ρ_{11} (b), and second excited state ρ_{22} (c).

(c)

10000.0

15000.0

20000.0

Classification of methods

A Quantum Mechanics

1. One structure, state: Static

QM: time-independent Schrödinger

- T = 0
- ab initio
- density functional
- semi-empiric
- empirical valence bond

B Classical Mechanics

CM: energy minimization

- T = 0
- empirical force field

2. Ensemble of structures, states: Statistical Mechanics

QM: density matrices

- T ‡ 0
- Fermi-Dirac
- Bose-Einstein
- path-integral simulation

CM: Boltzmann sampling

- T ‡ 0
- force field
- Monte Carlo
- molecular dynamics

Classification of methods

A Quantum Mechanics

B Classical Mechanics

3. *Trajectories* of structures, states: Dynamics

QD: time-dependent Schrödinger

- $T \ddagger 0 + dynamics$
- wave function propagation
- density matrix evolution
- surface hopping
- real time path integral
- Bohmian dynamics

Various combinations of techniques possible:

A1 (electrons)	+	B3 (atoms, nuclei)
A3 (proton)	+	B3 (molecules)

CM: Newton; Lagrange

- $T \ddagger 0 + dynamics$
- force field
- molecular dynamics

or

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- 1. Hybrid QM/MD simulation
- 2. Car-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

Treatment of quantum effects in molecular simulation

Classical versus Quantum simulation

- 1. Quantum effects
- 2. Methods and applications

Quantum-mechanical (QM) or quantum-dynamical (QD) simulation

- **1. Hybrid QM/MD simulation with GROMOS:**
- 2. Car-Parrinello "ab initio" simulation
- 3. Path-Integral (PI) simulation
- 4. Hybrid QMD/CMD dynamic simulation: wave function propagation
- 5. Hybrid QMD/CMD dynamic simulation: density matrix evolution

QM executables

MNDO

TURBOMOLE

Input files Including information

external point charges

QM output energies, gradients

about DM atoms, coordinates,

GROMOS

Spatial distribution of licences GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: <u>http://www.gromos.net</u>