International Spring School Statistical Thermodynamics, Santiago de Chile Tuesday, November 28, 2017 Lecture 17

On comparing simulated with experimental data

Prof. Dr. Wilfred F. van Gunsteren ETH Zürich, Switzerland

W.F.van Gunsteren/Santiago de Chile 281117/1

A. The experimental problem

1. Experimental data Oexp

B. Six aspects ensitivity of <Q>s 4. Compensation of (simulation of the second s erimenta 5. Biasing of the simulation t xperime Identity of calculated versus measured quar or syste C. Interpretation of experimental data using simulation 1. Relation between average < > and conform our reasons for agreem

3. Five reasons for disagreement between <Q>_{sim} and <Q>_{exp}

A. The experimental problem

1. Experimental data Q^{exp} **are averages over time and space**

B. Six aspects

ensitivity of <Q>s 4. Compensation of (simulat rimenta 5. Biasing of the simulation t xperime Identity of calculated versus measured quar C. Interpretation of experimental data using simulation 1. Relation between average < > and conform our reasons for agreem

A. The experimental problem

- **1. Experimental data Q**^{exp} are averages over time and space
- 2. Insufficient number of experimental data Qexp

B. Six aspects

ensitivity of <Q> 4. Compensation of (simulat rimenta 5. Biasing of the simulation t xperime Identity of calculated versus measured quar C. Interpretation of experimental data using simulation 1. Relation between average < > and conform our reasons for agreem

A. The experimental problem

- **1. Experimental data Q**^{exp} are averages over time and space
- 2. Insufficient number of experimental data Qexp
- 3. Insufficient accuracy of experimental data Qexp

B. Six aspects

2. How to handle average
3. Sensitivity of <Q>_{sim}
4. Compensation of (simulation perimental) errors
5. Biasing of the simulation to a is experiment
6. Identity of calculated versus measured quantities or systems
7. Interpretation of experimental data using simulation
1. Relation between average and conformation
4. Gur reasons for agreements of a simulation
3. Five reasons for disagreement between <Q>_{sim} and <Q>_{exp}

econ

A. The experimental problem

- **1. Experimental data Q**^{exp} **are averages over time and space**
- 2. Insufficient number of experimental data Qexp
- **3. Insufficient accuracy of experimental data Q**exp
- 4. Experimental data Q^{exp} may be inconsistent

B. Six aspects

ensitivity of <Q>. 4. Compensation of (simulat rimenta 5. Biasing of the simulation t xperime Identity of calculated versus measured quar C. Interpretation of experimental data using simulation **1.** Relation between average < **2** and conform our reasons for agreem

A. The experimental problem

- **1. Experimental data Q**^{exp} **are averages over time and space**
- 2. Insufficient number of experimental data Qexp
- 3. Insufficient accuracy of experimental data Qexp
- 4. Experimental data Q^{exp} may be inconsistent
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging the second s
 - Sensitivity of <Q>_{sim} or <C _____ the conformation
 - 4. Compensation of (simulation perimental) err
 - 5. Biasing of the simulation towards experiment
 - Identity of calculated versus measured quantities or systems

C. Interpretation of experimental data using simulation

- 1. Relation between average < 22 and conformati
 - Tour reasons for agreem
- 3. Five reasons for disagreement between <Q>_{sim} and <Q>_{exp}

Comparison with Experimental Data for a Quantity Q

 $< Q >_{sim} \leftrightarrow < Q >_{exp}$

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (**2008**) 149-153

Distinguish between:

1. primary experimental data **Q**^{measured}: *observable* quantities Q that are *directly measured*

Examples: peak location and intensity from X-ray diffraction or NMR spectroscopic measurements (a.o. ³J-values)

2. secondary (*derived using a model*) "experimental" data Q^{derived}: quantities Q for which (*non-observed*) values are *derived from* (observed) values of primary experimental data Q^{measured} by applying a particular procedure f: Q^{derived} = f (Q^{measured}) which involves assumptions and approximations Examples: *molecular structures* (a.o. torsional angle values) NMR order parameters

A β-hexapeptide

Two non-overlapping conformational ensembles reproduce the experimental data: Which one is realistic?

- β-hexapeptide with hydroxyl groups attached to the α-carbons
- NMR single-structure refinement based on NOE and ³J-coupling data suggests the formation of a 2₈-P-helix
- MD simulation from totally extended conformation at two different temperatures (298 K & 340K) using the GROMOS 45A3 force field without any NOE-distance or ³J-value restraining suggests the formation of a 2.5₁₂-P-helix

Glaettli & van Gunsteren, Angew. Chem. Int. Ed. Engl. 43 (**2004**) 6312

Bundle of 20 NMR model structures (protection groups not shown) Gademann et al., Angew. Chem. Int. Ed. Engl. 42 (**2003**) 1534

NOE Distance Violations & Backbone 3J-values

Two different methods to derive a set of peptide structures produce non-overlapping ensembles that each reproduce the *measured* data. However MD simulation (*ensemble*) predicts a well known 2.5₁₂-helix, whereas the NMR *single-structure* refinement predicts an unknown 2₈-helix

- A. The experimental problem
 - 1. Experimental data Q^{exp} are averages over time and space
 - 2. Insufficient number of experimental data Qexp
 - 3. Insufficient accuracy of experimental data Qexp
 - 4. Experimental data Q^{exp} may be inconsistent
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging
 - Sensitivity of <Q>_{sim} or <Q the conformational direction of (simulation of perimental) errors
 - 5. Biasing of the simulation towards experiment
 - Identity of calculated versus measured quantities or systems
- C. Interpretation of experimental data using simulation
 - 1. Relation between average < 2 and conformati
 - Four reasons for agreem
 - 3. Five reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

The Molecular Modelling Approach

How to calculate a quantity or observable $Q(\vec{r})$? Choose:

- 1. (essential) degrees of freedom \vec{r}
 - for $Q(\vec{r})$ electronic atomic solvent
- 2. interaction function $V^{phys}(\vec{r})$

between degrees of freedom (force field, e.g. GROMOS)

- 3. equations of motion or sampling method to generate a Boltzmann-weighted ensemble of conformers: probability $P(\vec{r}) = \exp(-V^{phys}(\vec{r})/k_BT) / \int \exp(-V^{phys}(\vec{r})/k_BT) d\vec{r}$
- 4. function $Q(\vec{r})$ (contains approximations and assumptions)

If

```
1. V^{phys}(\vec{r}) and Q(\vec{r}) are correct
```

2. *infinite* sampling

Ensemble averages $\langle Q \rangle_{\vec{r}} \equiv \int Q(\vec{r}) P(\vec{r}) d\vec{r}$ are to be compared: $\langle Q \rangle_{sim}$ **is to be compared to**

 $\langle Q \rangle_{exp} \equiv Q^{exp}$

Otherwise

make other choices and

problem solved

repeat

Examples of (*observable*) quantities Q(r): Boltzmann weighting is non-linear

Boltzmann weighting is non-linear Function Q(r) may be non-linear

- NOE intensities (NMR)
- ³J-coupling constants (NMR)
- Residual dipolar couplings (NMR)
- Chemical shifts (NMR)
- Structure factors (amplitudes) (X-ray)
- CD spectra (CD)

Effect of Ensemble (Motional) Averaging

The average structure $\langle \mathbf{r} \rangle_r$ is highly strained for a 6-B-peptide in methanol: 34 NOE's

left-handed 3₁₄-helix of a similar peptide in MeOH H-bonds: NH(i) – O(i+2)

average structure: distorted right-handed helix in MeOH only one H-bond: NH(4) - O(1)

right-handed helix in pyridine H-bonds: NH(i) – O(i+1, i-3)

due to 3 NOE's characteristic $\ \rightarrow\$ not observed in pyridine for a left–handed 314-helix

MD simulation: - satisfies all NOE bounds - shows 35% *right*-handed helix 1.3% *left*-handed helix

Conclusion: - average structure may be meaningless - use *primary* (*observed*) exp. data (NOE's), *not secondary* (*derived*) exp. data (structures) *to compare with*

W.F.van Gunsteren/Santiago de Chile 281117/14

X. Daura et al., Angew. Chem. Int. Ed. 38 (1999) 236-240

A. The experimental problem

- 1. Experimental data Q^{exp} are averages over time and space
- 2. Insufficient number of experimental data Qexp
- 3. Insufficient accuracy of experimental data Qexp
- 4. Experimental data Q^{exp} may be inconsistent
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging
 - 3. Sensitivity of $\langle Q \rangle_{sim}$ or $\langle Q \rangle_{exp}$ to the conformational distribution P(r)
 - 4. Compensation of (simulation apperimental) err
 - 5. Biasing of the simulation to values experiment
 - 6. Identity of calculated versus measured quantities or systems

C. Interpretation of experimental data using simulation

- 1. Relation between average < 2> and conformati
 - Four reasons for agreem
- 3. Five reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Relation between average $\langle Q \rangle$ and conformational distribution $P(\vec{r})$

When relating the *average* of a property over a given conformational distribution P(r), whether from a simulation ($\langle Q \rangle_{sim}$) or measured experimentally ($\langle Q \rangle_{exp}$), to the conformational distribution itself, **three general cases** can be distinguished:

- **Q1** <Q> does not reflect the shape of P(**r**) as <Q> is *insensitive* to conformation
- Q2 <Q> does not reflect the shape of P(r) as <Q> is determined by rarely sampled conformations with small (*irrelevant*) Boltzmann weights
- **Q3** <Q> *does reflect* the dominant conformations of P(r)

Only in case **Q3** can $\langle Q \rangle_{sim}$ carry information relevant to the interpretation of $\langle Q \rangle_{exp}$ at a molecular level

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (**2008**) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/16

Relation between average $\langle Q \rangle$ and conformational distribution $P(\vec{r})$

When relating the *average* of a property over a given conformational distribution P(r), whether from a simulation ($\langle Q \rangle_{sim}$) or measured experimentally ($\langle Q \rangle_{exp}$), to the conformational distribution itself, **three general cases** can be distinguished:

- **Q1** <Q> does not reflect the shape of P(**r**) as <Q> is *insensitive* to conformation
- Q2 <Q> does not reflect the shape of P(r) as <Q> is determined by rarely sampled conformations with small (*irrelevant*) Boltzmann weights
- **Q3** <Q> *does reflect* the dominant conformations of P(r)

Only in case **Q3** can $\langle Q \rangle_{sim}$ carry information relevant to the interpretation of $\langle Q \rangle_{exp}$ at a molecular level

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (**2008**) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/17

Different Ensembles of a 7-β-peptide in solution

 ${}^{3}J(H_{N}-H_{\alpha \text{ or }\beta})$ -couplings are *insensitive* to the conformational distribution

X. Daura et al., Proteins 36 (1999) 542-555

Relation between average $\langle Q \rangle$ and conformational distribution $P(\vec{r})$

When relating the *average* of a property over a given conformational distribution P(r), whether from a simulation ($\langle Q \rangle_{sim}$) or measured experimentally ($\langle Q \rangle_{exp}$), to the conformational distribution itself, **three general cases** can be distinguished:

- **Q1** <Q> does not reflect the shape of P(**r**) as <Q> is *insensitive* to conformation
- Q2 <Q> does not reflect the shape of P(r) as <Q> is determined by rarely sampled conformations with small (*irrelevant*) Boltzmann weights
- **Q3** <Q> *does reflect* the dominant conformations of P(r)

Only in case **Q3** can $\langle Q \rangle_{sim}$ carry information relevant to the interpretation of $\langle Q \rangle_{exp}$ at a molecular level

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (**2008**) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/19

Calculation of Circular Dichroism (CD) Spectra

Two molecules with *similar* CD spectra, but cannot have a *similar* dominant stucture

A. Glaettli et al., JACS 124 (2002) 12972-12978

CD Spectra per Conformational Cluster

Similarity criterion: backbone RMSD \leq 0.09nm 10000 structures, 10 psec apart

virtually NO OVERLAP between the conformational ensembles of both molecules, which have similar CD spectra !

→ spectrum *not representative* for the dominant conformation !

W.F.van Gunsteren/Santiago de Chile 281117/21

A. Glaettli et al., JACS 124 (2002) 12972-12978

Relation between average $\langle Q \rangle$ and conformational distribution $P(\vec{r})$

When relating the *average* of a property over a given conformational distribution P(r), whether from a simulation ($\langle Q \rangle_{sim}$) or measured experimentally ($\langle Q \rangle_{exp}$), to the conformational distribution itself, **three general cases** can be distinguished:

- **Q1** <Q> does not reflect the shape of P(**r**) as <Q> is *insensitive* to conformation
- Q2 <Q> does not reflect the shape of P(r) as <Q> is determined by rarely sampled conformations with small (*irrelevant*) Boltzmann weights
- **Q3** <Q> *does reflect* the dominant conformations of P(r)

Only in case **Q3** can $\langle Q \rangle_{sim}$ carry information relevant to the interpretation of $\langle Q \rangle_{exp}$ at a molecular level

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (**2008**) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/22

- A. The experimental problem
 - 1. Experimental data Q^{exp} are averages over time and space
 - 2. Insufficient number of experimental data Qexp
 - 3. Insufficient accuracy of experimental data Q^{exp}
 - 4. Experimental data Q^{exp} may be inconsistent
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging
 - 3. Sensitivity of $\langle Q \rangle_{sim}$ or $\langle Q \rangle_{exp}$ to the conformational distribution P(r)
 - 4. Compensation of (simulation, experimental) errors
 - 5. Biasing of the simulation towards experiment
 - Identity of calculated versus measured quantities or systems
- C. Interpretation of experimental data using simulation
 - 1. Relation between average < 2 and conformati
 - Tour reasons for agreem
 - 3. Five reasons for disagreement between $\langle \mathbf{Q} \rangle_{sim}$ and $\langle \mathbf{Q} \rangle_{exp}$

- A. The experimental problem
 - 1. Experimental data Q^{exp} are averages over time and space
 - 2. Insufficient number of experimental data Qexp
 - **3. Insufficient accuracy of experimental data Q**exp
 - 4. Experimental data Q^{exp} may be inconsistent
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging
 - 3. Sensitivity of $\langle Q \rangle_{sim}$ or $\langle Q \rangle_{exp}$ to the conformational distribution P(r)
 - 4. Compensation of (simulation, experimental) errors
 - 5. Biasing of the simulation towards experiment
 - Identity of calculated versus measured quantities or systems
- C. Interpretation of experimental data using simulation
 - 1. Relation between average < 22 and conformati
 - Tour reasons for agreem
 - 3. Five reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

A. The experimental problem

- 1. Experimental data Q^{exp} are averages over time and space
- 2. Insufficient number of experimental data Qexp
- 3. Insufficient accuracy of experimental data Qexp
- 4. Experimental data Q^{exp} may be inconsistent
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging
 - 3. Sensitivity of $\langle Q \rangle_{sim}$ or $\langle Q \rangle_{exp}$ to the conformational distribution P(r)
 - 4. Compensation of (simulation, experimental) errors
 - 5. Biasing of the simulation towards experiment
 - 6. Identity of calculated versus measured quantities or systems
- C. Interpretation of experimental data using simulation
 - 1. Relation between average < 22 and conformation
 - rour reasons for agreem
 - 3. Five reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

- A. The experimental problem
 - 1. Experimental data Q^{exp} are averages over time and space
 - 2. Insufficient number of experimental data Qexp
 - 3. Insufficient accuracy of experimental data Qexp
 - 4. Experimental data Q^{exp} may be inconsistent
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging
 - 3. Sensitivity of $\langle Q \rangle_{sim}$ or $\langle Q \rangle_{exp}$ to the conformational distribution P(r)
 - 4. Compensation of (simulation, experimental) errors
 - 5. Biasing of the simulation towards experiment
 - 6. Identity of calculated versus measured quantities or systems
- C. Interpretation of experimental data using simulation
 - 1. Relation between average < 2 and conformati
 - 2. Four reasons for *agreement* between <Q>_{sim} and <Q>_{exp}
 - 3. Five reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Reasons for **agreement** between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ may be obtained if:

- **A1** <Q> is insensitive to P(**r**), i.e. $\langle Q \rangle_{sim}$ matches $\langle Q \rangle_{exp}$ irrespective of the conformational distribution P(**r**) simulated
- **A2** There are compensating errors in the simulation model, procedure or experimental set-up
- **A3** The experimental data of interest, $\langle Q \rangle_{exp}$, has been used to bias the simulation
- **A4** $\langle Q(\mathbf{r}) \rangle_{sim}$ is sensitive to the distribution P(\mathbf{r})

Only in the case **A4** can the degree of agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ be used to validate the simulation and/or to interpret the experimental results

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (2008) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/27

Reasons for agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ may be obtained if:

- A1 <Q> is insensitive to P(r), i.e. <Q>_{sim} matches <Q>_{exp} irrespective of the P(r) simulated
- A2 There are compensating errors in the simulation model, procedure or experimental set-up
- **A3** The experimental data of interest, $\langle Q \rangle_{exp}$, has been used to bias the simulation
- **A4** $< Q(\mathbf{r}) >_{sim}$ is sensitive to the distribution P(\mathbf{r})

Only in the case **A4** can the degree of agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ be used to validate the simulation and/or to interpret the experimental results

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (2008) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/28

Reasons for agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ may be obtained if:

- A1 <Q> is insensitive to P(r), i.e. <Q>_{sim} matches <Q>_{exp} irrespective of the P(r) simulated
- A2 There are *compensating errors* in the simulation model, procedure or experimental set-up
- **A3** The experimental data of interest, $\langle Q \rangle_{exp}$, has been used to bias the simulation
- **A4** $\langle Q(\mathbf{r}) \rangle_{sim}$ is sensitive to the distribution P(\mathbf{r})

Only in the case **A4** can the degree of agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ be used to validate the simulation and/or to interpret the experimental results

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (2008) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/29

Reasons for agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ may be obtained if:

- A1 <Q> is insensitive to P(r), i.e. <Q>_{sim} matches <Q>_{exp} irrespective of the P(r) simulated
- A2 There are compensating errors in the simulation model, procedure or experimental set-up
- **A3** The experimental data of interest, $\langle Q \rangle_{exp}$, has been used to **bias** the simulation
- **A4** $\langle Q(\mathbf{r}) \rangle_{sim}$ is sensitive to the distribution $P(\mathbf{r})$

Only in the case **A4** can the degree of agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ be used to validate the simulation and/or to interpret the experimental results

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (2008) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/30

Interpretation of Experimental Data using Simulation Reasons for agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ may be obtained if:

- A1 <Q> is insensitive to P(r), i.e. <Q>_{sim} matches <Q>_{exp} irrespective of the P(r) simulated
- A2 There are compensating errors in the simulation model, procedure or experimental set-up
- **A3** The experimental data of interest, $\langle Q \rangle_{exp}$, has been used to bias the simulation
- **A4** $< Q(\mathbf{r}) >_{sim}$ **is sensitive** to the distribution P(\mathbf{r})

Only in the case **A4** can the degree of agreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$ be used to validate the simulation and/or to interpret the experimental results

W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (2008) 149-153 W.F.van Gunsteren/Santiago de Chile 281117/31

- A. The experimental problem
 - 1. Experimental data Q^{exp} are averages over time and space
 - 2. Insufficient number of experimental data Qexp
 - 3. Insufficient accuracy of experimental data Qexp
 - 4. Experimental data Q^{exp} may be inconsistent
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging
 - 3. Sensitivity of $\langle Q \rangle_{sim}$ or $\langle Q \rangle_{exp}$ to the conformational distribution P(r)
 - 4. Compensation of (simulation, experimental) errors
 - 5. Biasing of the simulation towards experiment
 - 6. Identity of calculated versus measured quantities or systems
- C. Interpretation of experimental data using simulation
 - 1. Relation between average < 22 and conformati
 - 2. Four reasons for agreement between <Q>_{sim} and <Q>_{exp}
 - **3. Five reasons for** *disagreement* **between** <**Q**>_{sim} **and** <**Q**>_{exp}

Reasons for **disagreement** between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Failure to observe a correlation between the simulation and experiment can be due to many reasons:

- **D1** The simulation is insufficiently accurate: i.e.
 - a) relevant degrees of freedom were omitted;
 - b) the force field was insufficiently accurate;
 - c) approximations made when solving the equations of motion were too crude;
 - d) inappropriate thermodynamic or spatial boundary conditions were used.
- **D2** The measured <Q>_{exp} is inaccurate
- **D3** <Q>_{sim} and <Q>_{exp} are averaged differently with respect to time or spatial extent
- **D4** Related but different quantities are compared, e.g. atom-positional fluctuations versus crystallographic B factors
- D5 Different systems are compared (e.g. crystal versus solution), or systems studied under different thermodynamic conditions (e.g. temperature, pressure, pH, ionic strength, etc.)

Reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Failure to observe a correlation between the simulation and experiment can be due to many reasons:

- **D1** The simulation is insufficiently accurate: i.e.
 - a) relevant degrees of freedom were omitted;
 - b) the force field was insufficiently accurate;
 - c) approximations made when solving the equations of motion were too crude;
 - d) inappropriate thermodynamic or spatial boundary conditions were used.
- **D2** The measured <Q>_{exp} is inaccurate
- **D3** <Q>_{sim} and <Q>_{exp} are averaged differently with respect to time or spatial extent
- **D4** Related but different quantities are compared, e.g. atom-positional fluctuations versus crystallographic B factors
- D5 Different systems are compared (e.g. crystal versus solution), or systems studied under different thermodynamic conditions (e.g. temperature, pressure, pH, ionic strength, etc.)

Definition of a model for molecular simulation

Comparison of ³ J _{HH} coupling constants
(in Hz) from NMR

Rms deviation simulation-experiment 1.5 Hz

	Pro ³		Pro ⁸		
	NMR	SD	NMR	SD	
$lpha eta_{c}$	8.5	7.9	8.1	8.0	
$\alpha \beta_{t}$	1.1	2.3	0.9	2.4	
$\beta_{\rm c} \gamma_{\rm c}$	6.8	8.7	6.8	8.7	
$\beta_c \gamma_1$	12.0	9.8	13.0	9.7	
$\beta_{\rm t} \gamma_{\rm c}$	2.4	2.2	1.4	2.3	
$\beta_i \gamma_i$	6.5	8.6	6.4	8.5	
$\gamma_{\rm c}\delta_{\rm c}$	7.6	8.7	7.3	8.6	
$\gamma_{c} \delta_{1}$	2.1	3.4	1.5	3.4	
γιδς	10.3	7.6	10.9	7.7	
γιδι	8.5	8.9	8.8	8.8	

Dynamics	GROMOS force field change	Friction coefficient ps ⁻¹	Residence time <i>ps</i>	
Experiment			≈ 30	
SD mean solvent	-	19	3	
SD mean solvent	-	1000	25	
SD mean solvent	torsion x kT up	19	25	
MD explicit solvent	-	-	24	

Solvent degrees of freedom are essential for dynamics

R.M. Brunne et al., JACS, 115 (**1993**) 4764-4768 *J.W. Peng et al., J. Biomol. NMR 8* (**1996**) 453-476

W.F.van Gunsteren/Santiago de Chile 281117/36

Definition of a model for molecular simulation

pH Dependence of the folding equilibrium of a β-peptide in methanol solvent Backbone atom-positional RMSD from the helical fold

Thermodynamic conditions chosen in a simulation may influence the result, i.c. the folding equilibrium

W.F.van Gunsteren/Santiago de Chile 281117/38

P.J. Gee & *W.F. van Gunsteren, Proteins* 63 (**2006**) 136-143

Reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Failure to observe a correlation between the simulation and experiment can be due to many reasons:

- **D1** The simulation is insufficiently accurate: i.e.
 - a) relevant degrees of freedom were omitted;
 - b) the force field was insufficiently accurate;
 - c) approximations made when solving the equations of motion were too crude;
 - d) inappropriate thermodynamic or spatial boundary conditions were used.
- **D2** The measured $\langle Q \rangle_{exp}$ is inaccurate
- **D3** <Q>_{sim} and <Q>_{exp} are averaged differently with respect to time or spatial extent
- **D4** Related but different quantities are compared, e.g. atom-positional fluctuations versus crystallographic B factors
- D5 Different systems are compared (e.g. crystal versus solution), or systems studied under different thermodynamic conditions (e.g. temperature, pressure, pH, ionic strength, etc.)

Modelling a specific membrane: area per lipid Area per lipid:

D. Poger & A.E. Mark, JCTC 6 (2010) 325-226

- Most commonly used experimental quantity to validate a lipid model. 1.
- 2. Difficult to measure directly.
- Often inferred from NMR relaxation data. 3.
- Depends on measurement conditions. 4.
- 5. Few research groups generate data.

Variation over time in the experimental data regarding the trans-gauche energy difference in aliphatic chains

This quantity will influence the structure and mobility of lipid chains

Experimental data vary with time

W.F.van Gunsteren/Santiago de Chile 281117/41

Schuler & van Gunsteren, Mol. Simulation 25 (2000) 301-319

Test of Force Field and NMR Data for Hen Egg White Lysozyme

Experimental Data

(Smith et. al., 1991, 1993; Buck et. al., 1995; Schwalbe et. al., 2001, both Oxford)

1158 NOE's derived inter-proton distances (set1 1993)

1525 NOE's derived inter-proton distances (set2 2001)

- 95 $^3J_{HN\alpha}\text{-coupling constants}$
- 100 ${}^3J_{\alpha\beta}\text{-coupling constants}$
- 124 backbone and 28 side-chain order parameters

X-ray coordinates (PDB 1aki, 1.5 Å)

NMR coordinates (PDB 1e8l, set of 50 structures)

Soares et al., J. Biomol. NMR 30 (**2004**) 407-422 van Gunsteren et al., Angew. Chemie Intl. Ed. 45 (**2006**) 4064-4092

NOE distance bound violations in HEWL

NOE bound violations computed from MD trajectories (43A1(1996)/45A3(2001)) **against** *two sets of experimental NOE distance bounds* from

Smith et. al. (set1, 1993) and from Schwalbe et. al. (set2, 2001)

Averaging period (ns)	Number of violations (set1) out of 1158 NOE's			Mean violation <r<sub>E-R_O></r<sub>	
	>0.1 nm	>0.2 nm	> 0.3 nm	_	
0.0-0.5	25/44	9/15	2/6	0.017/0.024	
0.5-1.5	31/44	11/15	3/3	0.020/0.024	1993 set
1.5-3.5	41/56	11/27	5/17	0.023/0.034	
0.0-3.5	23/43	9/17	3/6	0.019/0.026	
	Number of v out of 1525 >0.1 nm	violations (set2 5 NOE's (30% >0.2 nm	2) 5 more) > 0.3 nm		
0.0-0.5	21/43	4/9	0/0	0.015/0.021	
0.5-1.5	22/47	2/14	0/2	0.017/0.021	2001 set
1.5-3.5	27/60	6/12	0/6	0.017/0.026	
0.0-3.5	20/40	2/7	0/1	0.014/0.020	

Over time (1993 \rightarrow 2001) the experimental data converged towards simulated ones

W.F.van Gunsteren/Santiago de Chile 281117/43

FKBP (107 residues) + ascomycin

inconsistent experimental data

The protein is coloured according to whether or not there is a range of χ_1 dihedral angle values corresponding to the experimental ³J-coupling data (±1 Hz variation, distribution analysis):

black: no data (no ³J-couplings : 38; one ³J-coupling : 7 residues)
 green: there is a single, continuous range of angle values that satisfies all of the experimental data (39 out of 62 residues: 63%)

red: there is no such solution (23 out of 62 residues: 37 %): *inconsistent*?

103 ${}^{3}J_{N-H\beta}$ and 94 ${}^{3}J_{H\alpha}-H\beta}$ -values

W.F.van Gunsteren/Santiago de Chile 281117/44

Allison & van Gunsteren, ChemPhysChem 10 (2009) 3213-3228

yes, for 5 residues

Reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Failure to observe a correlation between the simulation and experiment can be due to many reasons:

- **D1** The simulation is insufficiently accurate: i.e.
 - a) relevant degrees of freedom were omitted;
 - b) the force field was insufficiently accurate;
 - c) approximations made when solving the equations of motion were too crude;
 - d) inappropriate thermodynamic or spatial boundary conditions were used.
- **D2** The measured <Q>_{exp} is inaccurate
- **D3** <Q>_{sim} and <Q>_{exp} are averaged differently with respect to time or spatial extent
- **D4** Related but different quantities are compared, e.g. differently defined free energies of folding
- D5 Different systems are compared (e.g. crystal versus solution), or systems studied under different thermodynamic conditions (e.g. temperature, pressure, pH, ionic strength, etc.)

Reasons for disagreement between <**Q** $>_{sim}$ **and** <**Q** $>_{exp}$

Related but different quantities are compared

 $\langle Q \rangle_{sim} \Leftrightarrow \langle Q' \rangle_{exp}$

1. $Q'(\vec{r})$ is a **free energy change**

 $\Delta G_{\text{folding}} = G_{\text{fold}} - G_{\text{denatured}}$

of folding or renaturation,

as derived from experiment by changing the thermodynamic conditions:

- temperature change
 pH change
 Different solute stabilities or
- ionic strength or *co-solvent change* free energies of folding Q'(r)

2. $Q(\vec{r})$ is a **free energy change**

 $\Delta G_{\text{folding}} = G_{\text{fold}} - G_{\text{unfolded}}$ of folding as derived from one simulation at one given thermodynamic state point by counting the ratio of folded versus unfolded conformations

Comparison has only limited value: $\Delta G_{folding}(Q') \neq \Delta G_{folding}(Q)$

The WW domain of the PIN1 protein: Contribution of backbone hydrogen bonding to β-sheet stability

11 backbone-backbone hydrogen bonds, distributed over three β-strands, *each NH individually replaced by Oxygen*

 $R_1 = R_3$ and $R_2 = R_4$ Deechor JACS 12

Deechongkit et al., JACS 126 (2004) 16762

20 single residue mutants synthesised and their stability measured by experiments:

- 1. Thermal denaturation
- 2. Chaotrope denaturation (Gd-Cl)

Different quantities reflecting fold stability need not show high correlation

Reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Failure to observe a correlation between the simulation and experiment can be due to many reasons:

- **D1** The simulation is insufficiently accurate: i.e.
 - a) relevant degrees of freedom were omitted;
 - b) the force field was insufficiently accurate;
 - c) approximations made when solving the equations of motion were too crude;
 - d) inappropriate thermodynamic or spatial boundary conditions were used.
- **D2** The measured <Q>_{exp} is inaccurate
- **D3** <Q>_{sim} and <Q>_{exp} are averaged differently with respect to time or spatial extent
- **D4** Related but different quantities are compared, e.g. atom-positional fluctuations versus crystallographic B factors
- D5 Different systems are compared (e.g. crystal versus solution), or systems studied under different thermodynamic conditions (e.g. temperature, pressure, pH, ionic strength, etc.)

- A. The experimental problem
 - 1. Experimental data Q^{exp} are *averages* over time and space
 - 2. Insufficient number of experimental data Qexp
 - 3. Insufficient accuracy of experimental data Qexp
 - 4. Experimental data Q^{exp} may be *inconsistent*
- **B. Six aspects**
 - 1. Measured (primary) versus derived (secondary) data
 - 2. How to handle averaging
 - 3. Sensitivity of $\langle Q \rangle_{sim}$ or $\langle Q \rangle_{exp}$ to the conformational distribution P(r)
 - 4. Compensation of (simulation, experimental) errors
 - 5. Biasing of the simulation towards experiment
 - 6. *Identity* of calculated versus measured quantities or systems
- C. Interpretation of experimental data using simulation
 - 1. *Relation* between average <Q> and conformational distribution P(r)
 - 2. Four reasons for agreement between <Q>_{sim} and <Q>_{exp}
 - **3.** Five reasons for disagreement between $\langle Q \rangle_{sim}$ and $\langle Q \rangle_{exp}$

Spatial distribution of licences GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: <u>http://www.gromos.net</u>

W.F.van Gunsteren/Santiago de Chile 281117/51