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Classical Limit

In the classical limit:

It is assumed that the momentum (p) and positions (q) can be
defined with high precision.

I p and q are continuous variables
I No uncertainty principle
I h ≈ 0
I Indistinguishablility, N! correction.

Classic Hamiltonian
I H(p,q) = p2

2m + V(q)
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Macrostate-Microstate

Macrostate: The state of a system in thermodynamic equilibrium,
described by a small number of macroscopic quantities (e.g. P,T,V...)

Microstate: detailed description of the system, the state of each
particle is defined.e.g. classical system of N particles
(p,q) = X = (p1(t), ...,pN(t),q1(t), ...qN(t)) ∈ Γ ⊂ R6N

Γ = phase-space. Every microstate (X) corresponds to point in Γ.

Equations of motion:

ṗi(t) = −∂H
∂qi

q̇i(t) =
∂H
∂pi

t1

t2

X

In practice it is impossible to integrate the equations of motion for
N ∼ 1023.
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Gibbs Ensemble

Central idea: Introduction to statistical methods.

The macrostate is defined through a probability distribution of microstates
in phase-space.
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Let’s define ρ(X, t) as the ensemble distribution function:

The ensemble distribution function: properties

ρ(X, t) ≥ 0 (1)

∫
Γ
dXρ(X, t) = 1 (2)

It is a probability density function (pdf) or phase space density !!!

Explicit form of ρ(X, t) depends on the given macrostate (i.e
ensemble). ρ(X, t)→ ρens(X, t)

At equilibrium, ∂ρ
∂t = 0, ρ(X) = ρ(H(p,q)) (Remember Liouville’s

equation.)
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Partition Function: In general.

Rewrite ρens(X).

ρens(X) =
1

Qens
wens(X)

wens(X) is the weight function.

Qens is the normalization factor (up to a multiplicative factor).

Qens(X) =

∫
Γ
dXwens(X)

Qens is the partition function or sum over states, it only depends on
macroscopic properties.

Connection to thermodynamics:

Ψens = − lnQens(X) Thermodynamic potential
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Averages and Ergodicity.
Macroscopic properties are obtained as ensemble averages. For
observable A = A(X)

I Ensemble Average (expectation value)

〈A〉ρens =

∫
Γ
dXA(X)ρens(X) =

∫
Γ
dXA(X)

wens(X)

Qens(X)

Experimental measurement of an observable A, corresponds to a time
average over a finite time.

〈A〉t(τ) =
1

τ

∫ τ

0
dtA(t) =

1

τ

∫ τ

0
dtA(X(t))

Ergodic hypothesis (Boltzmann)

〈A〉ρens = lim
τ→∞
〈A〉t(τ) ?

answer:
I Even for simplest systems, ergodicity cannot be proven.
I instead: quasi-ergodic.
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The (classical) microcanonical ensemble (NVE)

isolated and closed system of N particles in
volume V

energy E is given through
H(X) ∈ [E ,E + ∆]

only states within the two energy
hypersurfaces are allowed

Let Ω(E ,V ,N) = Ω(E ,V ,N; ∆), the number of microstates consistent
with these conditions.

Postulate of Equal a Priori Probability

At thermodynamic equilibrium, any state satisfying these conditions is
equally likely.
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Thus:

ρm(X) =

{
1/Ω(E ,V ,N) if E ≤ H(X) ≤ E + ∆
0 otherwise

Explicit calculation :

Ω(E ,V ,N; ∆) =
1

N!

1

h3N

∫
Γ;E≤H≤E+∆E

dX

1
N! , correction to take care for overcounting.

1
h3N , volume of a microstate in phase-space.

Normalization:

1

N!

1

h3N

∫
Γ;E≤H≤E+∆E

dXρm(X) = 1

Ensemble Average:

〈A〉NVE =
1

N!

1

h3N

∫
Γ
dXρm(X)A(X)
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Entropy
Definition of microcanonical entropy Sm (according to Boltzmann)

Function Sm

Sm = kB ln Ω(N,V ,E ; ∆)

or a more general definition

Sm = −k < ln ρm >=
1

N!

1

h3N

∫
Γ
dXρm(X) ln ρm(X)

0 ≤ ρm(X) ≤ 1 ∴ S ≥ 0

One can show that Sm is identical to the thermodynamic S (next
slides)
Sm is maximal for ρm(X) under constrainst that N,V ,E are constant.
(Previous lecture derivation!!)
entropy is a measure of the phase space (Γ) volume, measure of
uncertainty, but not a measure of disorder!!!!
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Function S: discrete examples

Example: Uniform Distribution

Ω = Number of states

P = 1
Ω ,
∑Ω

1 Pn = 1

S = −k
∑Ω

1
1
Ω ln 1

Ω = −k ln 1
Ω

∑Ω
1

1
Ω = −k ln 1

Ω = k ln Ω

No information !!!

Example: Delta Distribution

Ω = Number of states

P(x) =

{
1 if x = n
0 if n 6= x

(3)

S = −kPn lnPn = −k1 ln 1 = 0

Full information!!!
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Example: S of N coins

Ω = 2N

P = 1
Ω ,
∑Ω

1 Pn = 1

S = ln 2N = N ln 2

Entropy of N bits

The function S is proportional to the number of degrees of freedom, i.e.
System size. That is the main reason to employ the ”ln” function. In fact,
S is the statistical definition of entropy, we will see that it is equivalent to
the thermodynamic definition.
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A thermal interaction: Connection to thermodynamics.

A B

EA,VA,SA,NA EB,VB,SB,NB

Thermal Contact

System A: VA,NA fixed but EA variable.

System B: VB ,NB fixed but EB variable.

restriction on the composite system: EA + EB = E = const

thus H = HA +HB +W ∼ HA +HB = E
Question: What are the most probables values for EA and EB in the
composite system? (notation ẼA and ẼB = E − ẼA )
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Answer:
The probability P(EA) that system A is in state with energy EA and
system B in a state with energy EB = E − EA

P(EA) ∝ ΩA(EA)ΩB(EB) = ΩA(EA)ΩB(E − EA)

ẼA and ẼB , are determined by maximizing P(EA)

∂P(EA)

∂EA
=
∂ΩA(EA)

∂EA
ΩB(E − EA) + ΩA(EA)

∂ΩA(E − EB)

∂EB
(−1) = 0

Rearranging:

1

ΩA(ẼA)

∂ΩA(EA)

∂EA
|EA=ẼA︸ ︷︷ ︸

∂
∂EA

ln ΩA(EA)|ẼA

=
1

ΩB(E − ẼA)

∂Ω(EA − EB)

∂EB
|EA=ẼA︸ ︷︷ ︸

∂
∂EB

ln ΩB(EB)|E−ẼA
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since Sm;A = kB ln ΩA(EA,NA,VA) and Sm;B = kB ln ΩB(EB ,NB ,VB) we
obtain

∂

∂EA
Sm;A|ẼA

=
∂

∂EB
Sm;B |E−ẼA

With the thermodynamic definition:

1

T
=
∂Sm(E )

∂E

thus:

TA = TB (thermal equilibrium)
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Canonical Ensemble.

Consider a System of N1 particles in volume V1, that is in contact with a
(much) larger system (”heat bath”; N2 particles, volume V2)

system: V1,N1, E1= H1(X1)

”heath bath”: V2,N2,E2=H2(X2)

composite system: V = V1 + V2,
N = N1 + N2,H = H1 +H2 + W ∼
H1 +H2 and E1 << E , E ∼ E2

hola
The microcanonical distribution for the composite system

ρm(X1; X2) =

{ 1
Ω(E1+E2,V1+V2,N1,N2;∆) if E ≤ E1 + E2 ≤ E + ∆

0 otherwise

with ∆ << E
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The canonical phase space density, ρc , that describes the probability that
system 1 is in state X1, is obtained by integrating over the irrelevant
coordinates:

ρc ∝
∫

Γ2;E1+E2∈[E ,E+∆]︸ ︷︷ ︸
E2 ∈ [(E − E1),E − E1 + ∆]

dX2ρm(X1; X2)︸ ︷︷ ︸
irrelevant coordinates

∝ Ω2(E − E1)

thus

ρc(X1) ∝ Ω2(E − E1)

ln ρc(X1) = ln Ω2(E − E1) + const
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since E >> E1 and performing a Taylor expansion around E up to first
order:

ln Ω(E − E1) ∼ ln Ω2(E ) +
∂

∂E
ln Ω2|E (−E1) +O(E 2

1 )

∼ 1

kB
S2 +

1

kBT2
(−E1) + ...

therefore

ρk(X1) ∼ exp[S2(E )/kB ] exp[−E1/kBT2]
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Since we are only interested in system 1, we omit the indexes:

T2 → T

E1 → H(X)

β = 1/(kBT )

thus we obtain the canonical distribution function or Boltzmann
distribution, ρc(X)

ρc(X) =
1

Zc
exp[−βH(X)] =

1

Zc
exp[−βH(p,q)]

with the canonical partition function Zc

1

N!h3N

∫
Γ
dpdq exp[−βH(p,q)]

with the Boltzmann factor exp[−βH(p,q)]
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Ensemble averages:

〈A〉NVT =
1

N!h3N

1

Zk

∫
Γ
dpdqA(p,q) exp[−βH(p,q)]

example

〈H〉NVT =
1

N!h3N

1

Zk

∫
Γ
dpdqH(p,q) exp[−βH(p,q)]

〈H〉NVT = − 1

Zk

∂Zk

∂β
= − ∂

∂β
lnZk
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Definition of the canonical entropy:

Sc = −kB〈ln ρc〉NVT = − kB
N!h3N

∫
Γ
dpdq ρc ln ρc︸ ︷︷ ︸

−ρc (βH+ lnZc )

=
kB

N!h3N

∫
Γ
dpdqρc(βH+ lnZc) = βkB〈H〉+ kB lnZc

in the thermodynamic limit 〈H〉 → E and Sk → S and rearranging :

−kBT lnZc = E − TS = A(N,V ,T )
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Isothermal-Isobaric Ensemble.(NPT-Ensemble)

Consider a System of N1 particles in variable volume V1, that is in contact
with a (much) larger system (”heat bath”; N2 particles, volume V2)

system: V1(variable !),N1(fixed),
E1= H1(X1)

”heath and pressure bath”:
V2,N2,E2=H2(X2)

composite system:
I V = V1 + V2, where V1 << V2

and V2 ∼ V
I N = N1 + N2

I H = H1 +H2 + W ∼ H1 +H2

and E1 << E , E ∼ E2
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the NPT distribution function, ρNPT (p,q) (see exercise 4 of tutorial VI)

ρNPT (p,q) =
1

ZNPT
exp[−βH(p,q) + PV ]

with the canonical partition function ZNPT

1

N!h3N

∫ ∞
0

dV

∫
Γ
dpdq exp[−β(H(p,q) + PV )]
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Ensemble averages:

〈A〉NPT =
1

N!h3N

1

ZNPT

∫ ∞
0

dV

∫
Γ
dpdqA(p,q) exp[−β(H(p,q) + PV )]

example

〈H+ PV 〉NPT = − ∂

∂β
lnZNPT

−kBT lnZNPT = E + PV − TS = G (N,P,T )
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