Ensembles 2

Jose Antonio Garate

Life Sciences Foundation Applied Statistical Thermodynamics

jgarate@dlab.cl

November 24, 2017

Outline

- Classical Limit.
- Basic Concepts Overview.
- Microcanonical ensemble.
- Canonical Ensemble.
- Isothermal-Isobaric ensemble.

Classical Limit

In the classical limit:

- It is assumed that the momentum (p) and positions (q) can be defined with high precision.
 - **p** and **q** are continuous variables
 - No uncertainty principle
 - h ≈ 0
 - ▶ Indistinguishablility, N! correction.
- Classic Hamiltonian
 - $\mathcal{H}(\mathbf{p},\mathbf{q}) = \frac{\mathbf{p}^2}{2m} + \mathcal{V}(\mathbf{q})$

Macrostate-Microstate

- Macrostate: The state of a system in thermodynamic equilibrium, described by a small number of macroscopic quantities (e.g. P,T,V...)
- Microstate: detailed description of the system, the state of each particle is defined.*e.g.* classical system of N particles $(\mathbf{p},\mathbf{q})=\mathbf{X}=(\mathbf{p}_1(t),...,\mathbf{p}_N(t),\mathbf{q}_1(t),...\mathbf{q}_N(t))\in\Gamma\subset\mathbb{R}^{6N}$ $\Gamma=$ phase-space. Every microstate (\mathbf{X}) corresponds to point in Γ .

Equations of motion:

$$\dot{\mathbf{p}}_{\mathbf{i}}(t) = -rac{\partial \mathcal{H}}{\partial \mathbf{q}_{i}} \quad \dot{\mathbf{q}}_{\mathbf{i}}(t) = rac{\partial \mathcal{H}}{\partial \mathbf{p}_{i}}$$

In practice it is impossible to integrate the equations of motion for $N \sim 10^{23}$.

Gibbs Ensemble

Central idea: Introduction to statistical methods.

The macrostate is defined through a probability distribution of microstates in phase-space.

Let's define $\rho(\mathbf{X}, t)$ as the ensemble distribution function:

The ensemble distribution function: properties

$$\rho(\mathbf{X},t) \ge 0 \tag{1}$$

$$\int_{\Gamma} d\mathbf{X} \rho(\mathbf{X}, t) = 1 \tag{2}$$

It is a probability density function (pdf) or phase space density !!!

- Explicit form of $\rho(\mathbf{X},t)$ depends on the given macrostate (*i.e* ensemble). $\rho(\mathbf{X},t) \to \rho_{ens}(\mathbf{X},t)$
- At equilibrium, $\frac{\partial \rho}{\partial t} = 0$, $\rho(\mathbf{X}) = \rho(\mathcal{H}(\mathbf{p}, \mathbf{q}))$ (Remember Liouville's equation.)

Partition Function: In general.

• Rewrite $\rho_{ens}(\mathbf{X})$.

$$ho_{ens}(\mathbf{X}) = rac{1}{Q_{ens}} w_{ens}(\mathbf{X})$$

- $w_{ens}(X)$ is the weight function.
- ullet Q_{ens} is the normalization factor (up to a multiplicative factor).

$$Q_{ens}(\mathbf{X}) = \int_{\Gamma} d\mathbf{X} w_{ens}(\mathbf{X})$$

- Q_{ens} is the partition function or sum over states, it only depends on macroscopic properties.
- Connection to thermodynamics:

 $\Psi_{ens} = -\ln Q_{ens}(\mathbf{X})$ Thermodynamic potential

Averages and Ergodicity.

- Macroscopic properties are obtained as ensemble averages. For observable $A = A(\mathbf{X})$
 - Ensemble Average (expectation value)

$$\langle A
angle_{
ho_{ens}} = \int_{\Gamma} d\mathbf{X} A(\mathbf{X})
ho_{ens}(\mathbf{X}) = \int_{\Gamma} d\mathbf{X} A(\mathbf{X}) rac{w_{ens}(\mathbf{X})}{Q_{ens}(\mathbf{X})}$$

 Experimental measurement of an observable A, corresponds to a time average over a finite time.

$$\langle A
angle_{t(au)} = rac{1}{ au} \int_0^ au dt A(t) = rac{1}{ au} \int_0^ au dt A(\mathbf{X}(t))$$

• Ergodic hypothesis (Boltzmann)

$$\langle A \rangle_{
ho_{ens}} = \lim_{\tau \to \infty} \langle A \rangle_{t(\tau)}$$
 ?

answer:

- ▶ Even for simplest systems, ergodicity cannot be proven.
- instead: quasi-ergodic.

The (classical) microcanonical ensemble (NVE)

- ullet isolated and closed system of N particles in volume V
- energy E is given through $\mathcal{H}(\mathbf{X}) \in [E, E + \Delta]$
- only states within the two energy hypersurfaces are allowed

Let $\Omega(E, V, N) = \Omega(E, V, N; \Delta)$, the number of microstates consistent with these conditions.

Postulate of Equal a Priori Probability

At thermodynamic equilibrium, any state satisfying these conditions is equally likely.

Thus:

$$\rho_{\textit{m}}(\mathbf{X}) = \left\{ \begin{array}{ll} 1/\Omega(\textit{E},\textit{V},\textit{N}) & \quad \text{if } \textit{E} \leq \mathcal{H}(\mathbf{X}) \leq \textit{E} + \Delta \\ 0 & \quad \text{otherwise} \end{array} \right.$$

Explicit calculation:

$$\Omega(E,V,N;\Delta) = rac{1}{N!} rac{1}{h^{3N}} \int_{\Gamma;E \leq \mathcal{H} \leq E + \Delta E} d\mathbf{X}$$

- $\frac{1}{N^{I}}$, correction to take care for overcounting.
- $\frac{1}{h^{3N}}$, volume of a microstate in phase-space.

Normalization:

$$\frac{1}{N!} \frac{1}{h^{3N}} \int_{\mathbf{\Gamma}: E < \mathcal{H} < E + \Delta E} d\mathbf{X} \rho_m(\mathbf{X}) = 1$$

Ensemble Average:

$$\langle A \rangle_{NVE} = rac{1}{N!} rac{1}{h^{3N}} \int_{m{\Gamma}} d{f X}
ho_m({f X}) A({f X})$$

Entropy

• Definition of microcanonical entropy S_m (according to Boltzmann)

Function S_m

$$S_m = k_B \ln \Omega(N, V, E; \Delta)$$

or a more general definition

$$S_m = -k < \ln \rho_m > = \frac{1}{N!} \frac{1}{h^{3N}} \int_{\Gamma} d\mathbf{X} \rho_m(\mathbf{X}) \ln \rho_m(\mathbf{X})$$

$$0 \leq \rho_m(\mathbf{X}) \leq 1 :: S \geq 0$$

- One can show that S_m is identical to the thermodynamic S (next slides)
- S_m is maximal for $\rho_m(\mathbf{X})$ under constrainst that N, V, E are constant. (Previous lecture derivation!!)
- entropy is a measure of the phase space (Γ) volume, measure of uncertainty, but not a measure of disorder!!!!

Function S: discrete examples

Example: Uniform Distribution

- $\Omega = \text{Number of states}$
- $P = \frac{1}{\Omega}, \sum_{1}^{\Omega} P_{n} = 1$
- $S = -k \sum_{1}^{\Omega} \frac{1}{\Omega} \ln \frac{1}{\Omega} = -k \ln \frac{1}{\Omega} \sum_{1}^{\Omega} \frac{1}{\Omega} = -k \ln \frac{1}{\Omega} = k \ln \Omega$
- No information !!!

Example: Delta Distribution

- $\Omega = \text{Number of states}$
- •

$$P(x) = \begin{cases} 1 & \text{if } x = n \\ 0 & \text{if } n \neq x \end{cases}$$
 (3)

- $S = -kP_n \ln P_n = -k1 \ln 1 = 0$
- Full information!!!

Example: S of N coins

- $\Omega = 2^N$
- $P = \frac{1}{\Omega}, \sum_{1}^{\Omega} P_n = 1$
- $S = \ln 2^N = N \ln 2$
- Entropy of N bits

The function S is proportional to the number of degrees of freedom, *i.e.* System size. That is the main reason to employ the "In" function. In fact, S is the statistical definition of entropy, we will see that it is equivalent to the thermodynamic definition.

A thermal interaction: Connection to thermodynamics.

- System A: V_A , N_A fixed but E_A variable.
- System $B: V_B, N_B$ fixed but E_B variable.
- ullet restriction on the composite system: $E_A+E_B=E={
 m const}$

thus
$$\mathcal{H}=\mathcal{H}_A+\mathcal{H}_B+\mathcal{W}\sim\mathcal{H}_A+\mathcal{H}_B=E$$

Question: What are the most probables values for E_A and E_B in the composite system? (notation \tilde{E}_A and $\tilde{E}_B = E - \tilde{E}_A$)

Answer:

The probability $P(E_A)$ that system A is in state with energy E_A and system B in a state with energy $E_B = E - E_A$

$$P(E_A) \propto \Omega_A(E_A)\Omega_B(E_B) = \Omega_A(E_A)\Omega_B(E - E_A)$$

 $ilde{E}_A$ and $ilde{E}_B$, are determined by maximizing $P(E_A)$

$$\frac{\partial P(E_A)}{\partial E_A} = \frac{\partial \Omega_A(E_A)}{\partial E_A} \Omega_B(E - E_A) + \Omega_A(E_A) \frac{\partial \Omega_A(E - E_B)}{\partial E_B} (-1) = 0$$

Rearranging:

$$\underbrace{\frac{1}{\Omega_{A}(\tilde{E}_{A})} \frac{\partial \Omega_{A}(E_{A})}{\partial E_{A}}|_{E_{A} = \tilde{E}_{A}}}_{\frac{\partial}{\partial E_{A}} \ln \Omega_{A}(E_{A})|_{\tilde{E}_{A}}} = \underbrace{\frac{1}{\Omega_{B}(E - \tilde{E}_{A})} \frac{\partial \Omega(E_{A} - E_{B})}{\partial E_{B}}|_{E_{A} = \tilde{E}_{A}}}_{\frac{\partial}{\partial E_{B}} \ln \Omega_{B}(E_{B})|_{E - \tilde{E}_{A}}}$$

since $S_{m;A} = k_B \ln \Omega_A(E_A, N_A, V_A)$ and $S_{m;B} = k_B \ln \Omega_B(E_B, N_B, V_B)$ we obtain

$$\frac{\partial}{\partial E_A} S_{m;A}|_{\tilde{E}_A} = \frac{\partial}{\partial E_B} S_{m;B}|_{E - \tilde{E}_A}$$

With the thermodynamic definition:

$$\frac{1}{T} = \frac{\partial S_m(E)}{\partial E}$$

thus:

$$T_A = T_B$$
 (thermal equilibrium)

Canonical Ensemble.

Consider a System of N_1 particles in volume V_1 , that is in contact with a (much) larger system ("heat bath"; N_2 particles, volume V_2)

- system: V_1 , N_1 , $E_1 = \mathcal{H}_1(\mathbf{X}_1)$
- "heath bath": $V_2, N_2, E_2 = \mathcal{H}_2(\mathbf{X}_2)$
- composite system: $V = V_1 + V_2$, $N = N_1 + N_2$, $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + W \sim \mathcal{H}_1 + \mathcal{H}_2$ and $E_1 << E$, $E \sim E_2$

The microcanonical distribution for the composite system

$$\rho_m(\mathbf{X}_1; \mathbf{X}_2) = \left\{ \begin{array}{l} \frac{1}{\Omega(E_1 + E_2, V_1 + V_2, N_1, N_2; \Delta)} \\ 0 \end{array} \right.$$

if
$$E \leq E_1 + E_2 \leq E + \Delta$$
 otherwise

with $\Delta \ll E$

The canonical phase space density, ρ_c , that describes the probability that system 1 is in state X_1 , is obtained by integrating over the irrelevant coordinates:

$$ho_c \propto \underbrace{\int_{\Gamma_2; E_1 + E_2 \in [E, E + \Delta]}}_{E_2 \in [(E - E_1), E - E_1 + \Delta]} \underbrace{\frac{d\mathbf{X}_2
ho_m(\mathbf{X}_1; \mathbf{X}_2)}{\mathsf{irrelevant coordinates}}}_{\mathsf{irrelevant coordinates}}$$

thus

$$\rho_c(\mathbf{X}_1) \propto \Omega_2(E - E_1)$$

$$\ln \rho_c(\mathbf{X}_1) = \ln \Omega_2(E - E_1) + const$$

since $E >> E_1$ and performing a Taylor expansion around E up to first order:

$$\ln \Omega(E - E_1) \sim \ln \Omega_2(E) + \frac{\partial}{\partial E} \ln \Omega_2|_E(-E_1) + \mathcal{O}(E_1^2)$$

 $\sim \frac{1}{k_B} S_2 + \frac{1}{k_B T_2}(-E_1) + ...$

therefore

$$\rho_k(\mathbf{X}_1) \sim \exp[S_2(E)/k_B] \exp[-E_1/k_B T_2]$$

Since we are only interested in system 1, we omit the indexes:

- $T_2 \rightarrow T$
- $E_1 \rightarrow \mathcal{H}(\mathbf{X})$
- $\beta = 1/(k_B T)$

thus we obtain the canonical distribution function or Boltzmann distribution, $\rho_c(\mathbf{X})$

$$\rho_c(\mathbf{X}) = \frac{1}{Z_c} \exp[-\beta \mathcal{H}(\mathbf{X})] = \frac{1}{Z_c} \exp[-\beta \mathcal{H}(\mathbf{p}, \mathbf{q})]$$

with the canonical partition function Z_c

$$\frac{1}{N!h^{3N}}\int_{\Gamma}d\mathbf{p}d\mathbf{q}\exp[-\beta\mathcal{H}(\mathbf{p},\mathbf{q})]$$

with the Boltzmann factor $\exp[-\beta \mathcal{H}(\mathbf{p}, \mathbf{q})]$

Ensemble averages:

$$\langle A \rangle_{NVT} = \frac{1}{N! h^{3N}} \frac{1}{Z_k} \int_{\Gamma} d\mathbf{p} d\mathbf{q} A(\mathbf{p}, \mathbf{q}) \exp[-\beta \mathcal{H}(\mathbf{p}, \mathbf{q})]$$

example

$$\langle \mathcal{H} \rangle_{NVT} = \frac{1}{N! h^{3N}} \frac{1}{Z_k} \int_{\Gamma} d\mathbf{p} d\mathbf{q} \mathcal{H}(\mathbf{p}, \mathbf{q}) \exp[-\beta \mathcal{H}(\mathbf{p}, \mathbf{q})]$$

$$\langle \mathcal{H} \rangle_{NVT} = -\frac{1}{Z_k} \frac{\partial Z_k}{\partial \beta} = -\frac{\partial}{\partial \beta} \ln Z_k$$

Definition of the canonical entropy:

$$\begin{split} S_c &= -k_B \langle \ln \rho_c \rangle_{NVT} = -\frac{k_B}{N! h^{3N}} \int_{\Gamma} d\mathbf{p} d\mathbf{q} \underbrace{\rho_c \ln \rho_c}_{-\rho_c (\beta \mathcal{H} + \ln Z_c)} \\ &= \frac{k_B}{N! h^{3N}} \int_{\Gamma} d\mathbf{p} d\mathbf{q} \rho_c (\beta \mathcal{H} + \ln Z_c) = \beta k_B \langle \mathcal{H} \rangle + k_B \ln Z_c \end{split}$$

in the thermodynamic limit $\langle \mathcal{H} \rangle \to E$ and $S_k \to S$ and rearranging :

$$-k_B T \ln Z_c = E - TS = A(N, V, T)$$

Isothermal-Isobaric Ensemble. (NPT-Ensemble)

Consider a System of N_1 particles in variable volume V_1 , that is in contact with a (much) larger system ("heat bath"; N_2 particles, volume V_2)

- system: V_1 (variable !), N_1 (fixed), $E_1 = \mathcal{H}_1(\mathbf{X}_1)$
- "heath and pressure bath": $V_2, N_2, E_2 = \mathcal{H}_2(\mathbf{X}_2)$
- composite system:
 - $lackbox{V} = V_1 + V_2$, where $V_1 << V_2$ and $V_2 \sim V$
 - $N = N_1 + N_2$
 - $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + W \sim \mathcal{H}_1 + \mathcal{H}_2$ and $E_1 << E$, $E \sim E_2$

the NPT distribution function, $\rho_{NPT}(\mathbf{p}, \mathbf{q})$ (see exercise 4 of tutorial VI)

$$ho_{NPT}(\mathbf{p}, \mathbf{q}) = \frac{1}{Z_{NPT}} \exp[-\beta \mathcal{H}(\mathbf{p}, \mathbf{q}) + PV]$$

with the canonical partition function Z_{NPT}

$$\frac{1}{N!h^{3N}}\int_0^\infty dV \int_\Gamma d\mathbf{p} d\mathbf{q} \exp[-\beta(\mathcal{H}(\mathbf{p},\mathbf{q})+PV)]$$

Ensemble averages:

$$\langle A \rangle_{NPT} = \frac{1}{N! h^{3N}} \frac{1}{Z_{NPT}} \int_0^\infty dV \int_{\Gamma} d\mathbf{p} d\mathbf{q} A(\mathbf{p}, \mathbf{q}) \exp[-\beta (\mathcal{H}(\mathbf{p}, \mathbf{q}) + PV)]$$

example

$$\langle \mathcal{H} + PV \rangle_{NPT} = -\frac{\partial}{\partial \beta} \ln Z_{NPT}$$

$$-k_BT \ln Z_{NPT} = E + PV - TS = G(N, P, T)$$

References

Gould and Tobochnik (2010)

Statistical and Thermal Physics with computer applications

http://stp.clarku.edu/notes/

Princeton University Press.

Tuckerman (2010)

Statistical Mechanics: Theory and Molecular Simulation

Oxford University Press.

 Ω