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History

300 BC, Aristotelian physics: general principles of change that govern
all natural bodies. ”continuation of motion depends on continued
action of a force”.

6th-14th centuries, The theory of impetus. Intellectual precursor to
the concepts of inertia, momentum and acceleration in classical
mechanics.

17th century Isaac Newton: The three laws of motion ” Philosophiae
Naturalis Principia Mathematica”.

17th century Isaac Newton and Gottfried Leibniz: Calculus.

18th century, Leonhard Euler: Rigid Body Motion.

18th century, Joseph Louis Lagrange: Lagrangian Mechanics.

19th century, William Rowan Hamilton: Hamiltonian Mechanics.

20th century, Relativity and Quantum Mechanics. Classical physics
defines the non-relativistic, non-quantum mechanical limit for massive
particles.
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Some nomenclature

r(t) = (x(t), y(t), z(t)) position vector

v(t) = dr(t)
dt velocity vector

p(t) = m dr(t)
dt momentum vector

a(t) = dv(t)
dt or d2r

dt2 acceleration vector

F = Force vector.

v(t) = ṙ(t) , a(t) = r̈(t) over dot notation

V,U = Potential Energy or capacity to do work.

K = 1
2mv2or p2

2m Kinetic Energy.
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The Newton Laws

1st Law: No external forces: v = C , dv
dt = 0 Inertia.

2nd Law: F = ma, where a = dv
dT .

FAB = −FBA Action and Reaction.

Some comments:

These laws assume that the response to a force is instantaneous (no
lag).

Measurement does not affect system and uncertainty principle does
not apply. No QM

Time and space lie outside physical existence and are absolute.
Different observers can always measure the same time and space. No
relativity.
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Newton’s second Law can be restated:

r̈(t) =
F

m
(1)

Equation (1) is a 2nd order differential equation, thus two initial
conditions need to be specified.

r(t) =

∫ ∫
F

m
dt (2)

For a constant force:

r(t) =
F

m
∆t2 + C1∆t + C2 (3)

C1 = Initial Velocity and C2 =Initial position. Equation (3) uniquely
specifies the motion of an object in time.
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Basic Concepts: Mechanical work

WA→B(path) ≡
∫ B

A
F · dL (4)

θ

dl

F

*Dot product F · dL ≡ |F||L| cos θ or
∑

Fi · Li . It is the projection of a vector into
another.
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Basic Concepts: Conservative Forces

Conservative forces are defined as vector quantities that are derivable from
a scalar function V (r1, ..., rN), known as a potential energy function, via

F(r1, ....., rN) = −∇iV (r1, .....rN) (5)

where ∇i = ∂/∂ri . Consider the work done by the force Fi in moving
particle i from points A to B along a particular path. The work done is:

WA→B =

∫ B

A
Fi · dL =

∫ B

A
−∇iV · dL = ∆VB→A (6)

Thus, we conclude that the work done by conservative forces is
independent of the path taken between A and B. It follows, therefore, that
along a closed path: ∮

Fi · L = 0 (7)
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Basic Concepts: Newton’s Laws for many particle systems

Classical mechanics in the microscopic world, deals with a large number of
particles that are the constituent of matter. It is assumed that the laws of
classical physics can be applied at the molecular level:

Fi = Fi (r1....., rn, ṙi ) (8)

Fi depends on the positions of the rest of the particles plus a friction term.
Now if the force only depends on the individual terms we say that is
pairwise additive:

Fi (r1....., rn, ṙi ) =
∑
j 6=i

Fi ,j(ri − rj) + Fext(ri , ṙj) (9)

Newton’s second law:

mi r̈i = Fi (r1....., rn, ṙi ) (10)
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Basic Concepts: Phase Space

-6N dimensional space, each point compromises the 3N positions + the
3N momentum

X = (r1......r3N , p1.......p3N)→ phase space vector (11)

All information required to propagate the system in time is contained
in the phase space vector.

Classical motion can be visualized a the motion of a phase-space
point in time.

For N ∼ 1023 it is a enormous element.
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Basic Concepts: Phase Space Examples
-1D free particle:
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Basic Concepts: Phase Space Examples

-1D Harmonic oscillator:

ẍ = − k

m
x (12)

V (x) = −
∫
−kx =

1

2
kx2 (13)

Let’s propose x(t) = e iωt

∂

∂t

∂e iωt

∂t
= i2ω2e iωt = − k

m
x(t) (14)

with ω =
√
k/m and employing euler’s identity e ikx = cos kx + i sin kx and

subject to two initial conditions:
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x(t) = A cos(ωt + φ) (15)

or

x(t) = x(0) cos(ωt) +
p(0)

ωm
sin(ωt) (16)

p(t) = p(0)cos(ωt)−mωx(0) sin(ωt) (17)

Assuming energy conservation:

p(t)2

2m
+

1

2
mω2x(t)2 = C (18)
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Conserved Quantities from Newton’s equations

Let’s assume N particles in 2D:
ET = K(v) + V(x)
K = 1

2m1(v2
x1

+ v2
y1

) + ..... and K̇ =
∑ 1

2 2vi1 v̇i1 =
∑

mvi1ai1 + .....

V̇ = dU
dx1

ẋ1 + dU
dy1

ẏ1 + ... =
∑
−mivi1ai1 + .....

Ėt = V̇ + K̇ =
∑

mivi1ai1 + .....+
∑
−mivi1ai1 + ..... = 0 (19)

Total Energy is conserved!!!!
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Conserved Quantities from Newton’s equations

Let’s assume 3 particles in 3D:

Fi = d
dt (mivi ) = ṗi

F1 = F21 + F31

F2 = F12 + F32

F3 = F13 + F23

1

23

F 2
1F 1

2

F
13

F
31

F32

F23

Given that Newton’s 3rd law implies Fij = Fji

ṗt =
∑

ṗi =
∑

Fi = 0 (20)

Total momentum is conserved!!!
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Lagrangian Mechanics
Newton’s equations are a local approach, i.e. derivatives, in other
words local equations along a trajectory.
A global approach only looks at the end-points. There is a unique
trajectory that connects both end-points.
There is a quantity that is minimized along the trajectory.

What to minimize?

Trajectory is a multivariate function. t1

t2

X
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Lagrangian Mechanics: The Action

A =

∫ t2

t1

dtK(q̇)− V(q1....qn) (21)

Generalized coordinates qi : cartesian,
polar, orientation etc...

What to minimize? The action.

The integrand in equation (21) is called
the Lagrangian L(q̇, q) .

t1

t2

X

A =

∫ t2

t1

dtL(q̇, q) (22)
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Lagrangian Mechanics: Calculus of variations

Small first order variation on the
trajectory

q1(t)......qn(t)→ qi (t) + αfi (t) = q′i (t)

α is any number.

and fi (t) vanishes at the end-points.

We postulate that the action is
minimized in q′(t)

t1

t2

Perturbed trajectory q'

∂A(α)

∂α
= 0 (23)
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∂q′i (t)
∂α = fi (t) ,

∂q̇′i (t)
∂α = ḟi (t)

∂A

∂α
=

∫ t2

t1

dt
n∑

i=1

[
∂L
∂qi
· fi +

∂L
∂q̇i
· ḟi
]

= 0 (24)

Integrating by parts the second term and using the fact that fi vanishes at
the end-points:

∂A

∂α
=

∫ t2

t1

dt
n∑

i=1

fi

[
∂L
∂qi
− d

dt

∂L
∂q̇i

]
= 0 (25)

Given that dt is not zero and fi only vanishes at the end-points, it implies:

∂L
∂qi
− d

dt

∂L
∂q̇i

= 0 (26)

Equation (26) is known as the Euler-Lagrange equation. There are n
equation for each qi generalized coordinate.
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Euler-Lagrange equation

Πi = ∂L
∂q̇i

= The conjugate momentum to qi .

∂L
∂qi

= The generalized force.

Example: Single particle 1D

L =
p2
i

2m − V(xi )
∂L
∂q̇i

= pi
∂L
∂xi

= − ∂V
∂xi

ṗi = − ∂V
∂xi

= fi = miai
Thus we recover Newton’s 2nd law.
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Lagrangian and Conservation Laws

-Multiple Particle system in Cartesian coordinates:

L =
n∑

i=1

pi
2

2mi
− V(x1.....xn)∗ (27)

* Inter-particle potential.

Example: Two particle system in 1D.

L =
∑2

i=1
p2
i

2m − V(x1 − x2)
d
dt
∂L
∂ẋi

= ∂L
∂xi

ṗ1 = −∂V(x1−x2)
∂x1

,

ṗ2 = −∂V(x1−x2)
∂x2

= ṗ1 + ṗ2 = 0

x1 x2

Total momentum is conserved. If we translate the system the Lagrangian
does not change (V only depends on distance. Momentum is conserved
due to translational symmetry. Relation between symmetries and
conservation laws.
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-1 Particle in 2D under gravitation:

V = mgy

L = p2
x

2m +
p2
y

2m −mgy

ṗx = ∂L
∂x = 0

ṗy = ∂L
∂y = −mg

Gravitation

y

x
Gravitation breaks translational symmetry in the y dimension. Any change
in the y direction changes the Lagrangian.
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-Symmetries and conservations laws are related to operations that do not
alter the Action.
- F (α), dF =

∑ ∂F
∂αi

dαi = 0
-Small variations in the trajectory, first order.
qi → qi + ε · fi (q), dqi = εfi (q)
The variation in the action is:

dA =

∫ t2

t1

dt
n∑

i=1

[
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i

]
= 0 (28)

Integrating by parts equation (28):

dA =

∫ t2

t1

dt
n∑

i=1

dqi

[
∂L
∂qi
− d

dt

∂L
∂qi

]
+
∂L
∂q̇

dqi |t2
t1

(29)
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Now, the end-point contributions
∑n

i=1
∂L
∂q̇ dqi |

t2
t1

do not vanish and by
virtue of the Euler-Lagrange equation and the condition of null variation of
the action dA = 0 the following expression is obtained:

n∑
i=1

∂L
∂q̇

dqi |t2
t1

=
n∑

i=1

Πiεfi |t2
t1

= 0 (30)

In other words the quantity
∑n

i=1 Πi fi is conserved when performing a
variation εfi that does not alter the Action.

∑n
i=1 Πi fi is know as Noether

charge.
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Example: Translate all particles by ε in the x direction:

dxi = ε, fx = 1

dxi = 0, fy = 0

dzi = 0, fz = 0

t

q

qi
qi+ϵfi

t1

t2

t1

t2

∑
Πi fi =

∑
pix = C (31)

Momentum is conserved due to translational invariance.

Jose Antonio Garate (Dlab) Classical Mechanics November 22, 2017 25 / 55



Example: Rotate all particles by ε in the x-y plane:

dx = −εy , fx = −y
dy = εx , fy = x

ϵ

y

x∑
Πi fi =

∑
−pxy + pyx = L = Angular momentum (32)

Angular momentum is conserved due to rotational invariance.
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Example: Move forward in time by ε :

q(t)→ q(t − ε)
dq(t) = −dq

dt ε = −q̇ε

T

q

tA

tB

A

B

What is the Variation in the Action:

dA =

∫ tA

tB

dt
n∑

i=1

[
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i

]
+ A− B = 0 (33)
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Integrating by parts equation (33):

dA =

∫ tA

tB

dt
n∑

i=1

dqi

[
∂L
∂qi
− d

dt

∂L
∂qi

]
+
∂L
∂q̇i

dqi |tAtB + A− B = 0 (34)

Applying the Euler-Lagrange equation:

n∑
i=1

∂L
∂q̇i

dqi |t2
t1

+ A− B = 0 (35)

And given than ε is small, A and B can be approximated by L(tA) ∗ ε and
L(tB) ∗ ε respectively.

n∑
i=1

∂L
∂q̇i

dqi |tAtB + ε[L(tA)− L(tB)] = 0 (36)

ε

[
n∑

i=1

− ∂L
∂q̇i

q̇i + L

]
|tAtB = 0 (37)
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Thus the quantity
∑n

i=1−
∂L
∂q̇i

q̇i + L is conserved due to
time-translational symmetry and it is defined as −H. H is known as the
hamiltonian.

H =
∑

q̇Πi − L(q, q̇) (38)

Example: 1D Particle in a Potential.

L = 1
2mẋ2 − V(x)

Π = mẋ

Πẋ = mẋ2

H = mẋ2 − [ 1
2mẋ2 − V(x)]

H =
1

2
mẋ2 + V(x) (39)

Thus the total Energy is the quantity that is conserved due to
time-translational symmetry. This is the most general definition of energy.
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Hamiltonian Mechanics
Laws of mechanics:

Subject to conservation Laws.

Information is conserved.

Nothing disappear or appears.

For each degree of freedom we need to know ”where we are” and
”where we are going”

z

x

y
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Lagrangian : 2nd -order differential equation.

m d2xi
dt2 = Fi

-Mathematically it is trivial to convert a 2nd order differential equation in
to two first-order differential equations:

m dxi
dt = pi

m dpi
dt = Fi

Thus we need position and momentum for each degree of freedom.

q

p
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The Legendre transform

Consider a function E (V ) of one variable. The Legendre transform allows
to replace the independent variable V by the derivative ∂E

∂V .

∂E(V )
∂V = P(V )

∂H(P)
∂P = V (P)

E (V ) =
∫ V ′

0 P(V )dV

H(P) =
∫ P′

0 V (P)dP

H(P) + E (V ) = P ′V ′

P'

V'

P

V

H(P)
E(V)
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The Legendre transform II

We define the Legendre transform of the function E (V ) as

H(P) = PV − E (V ) (40)

Thus for any function f (x(y)) the Legendre transform f ∗(y(x)) is defined
as:

The Legendre Transform

f ∗(y(x)) =
∂f (x(y))

∂x
x(y)− f (x(y)) (41)

or

−f ∗(y(x)) = f (x(y))− ∂f (x(y))

∂x
x(y) (42)
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Hamiltonian Mechanics and Legendre transforms

Based on the definition of the Hamiltonian H =
∑

q̇Πi − L(q, q̇) it is
evident that it has the form of a legendre transform of the Lagrangian.
Let’s compute the variation in H:

dH =
∑

q̇idpi +
∑

pidq̇i −
∑ ∂L

dqi
dqi −

∑ ∂L
dq̇i

dq̇i (43)

dH =
∑

q̇idpi −
∑ ∂L

dqi
dqi (44)

Thus H is function of the pi ’s and qi ’s. H(q, p)
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Derivating with respect to each qi and pi equation (44) while keeping the
rest of variables fixed we obtain:(

∂H
∂pi

)
qi

= q̇i (45)

and

−
(
∂H
∂qi

)
pi

= ṗi (46)

Equations (45) and (46) are know as the Hamilton equation of motion.
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(
∂H
∂pi

)
qi

= q̇i . Velocity of

positions.(
−∂H
∂qi

)
pi

= ṗi . Velocity of

momentums

q

p

A pair of equations for each degree of freedom that define a flux in
phase-space.
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-Energy Conservation

dH
dt

=
∑[

∂H
∂p

ṗ +
∂H
∂q

q̇

]
(47)

dH
dt

=
∑[

−∂H
∂p

∂H
∂q

+
∂H
∂q

∂H
∂p

]
= 0 (48)

The hamiltonian is conserved!!!
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General form of conservation Laws

Any property of a system of particles is a function of the phase-space
variable p and q.

dA(p,q)
dt =

∑[
∂A
∂p ṗ + ∂A

∂q q̇
]

dA
dt =

∑[
∂A
∂q

∂H
∂p −

∂A
∂p

∂H
∂q

]
= {A,H}

Poisson Bracket = {A,B} =
∑[

∂A
∂q

∂B
∂p −

∂A
∂p

∂B
∂q

]
dH
dt

=
∑[

−∂H
∂p

∂H
∂q

+
∂H
∂q

∂H
∂p

]
= 0 (49)

-Hamiltonian generates time-depedence

q̇ = {q,H} =
∑[

∂q
∂q

∂H
∂p −

∂q
∂p

∂H
∂q

]
= q̇

ṗ = {p,H} =
∑[

∂p
∂q

∂H
∂p −

∂p
∂p

∂H
∂q

]
= ṗ
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Phase-Space incompressibility

Flow in x-y plane

All fluid moves with the same velocity

no gradient of velocity

Number of points that enter or leave are
the same.
∂V
∂x ∆y + ∂V

∂y ∆x = 0[
∂V
∂x + ∂V

∂y

]
= ∇xi · F (x1...xn) = 0

ΔX

ΔY

Y

X

dv
dx

dv
dy

∇xi · F (x1...xn) is defined as the divergence operator. When the fluid
velocity (flux) has zero divergence it is called an incompressible fluid.
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Ẋ = ρ(X) Phase-space velocity vector

∇ · Ẋ =
∑ ∂ṗi

∂pi
+
∂q̇i
∂qi

=
∑
− ∂

∂pi

H
∂qi

+
∂

∂qi

H
∂pi

= 0 (50)

The divergence of phase-space flow is incompressible!!!!!!
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The ensemble distribution function
The trajectory approach involves the knowledge with a infinite precision of
all p and q in phase-space, in this way is an idealization specially for
microscopic systems. We can tackle with employing an statistical
approach:

Phase Space : All possible microstates available to a system of N
particles.

Ensemble: Contains all microstates consistent with a set of
macroscopic variables e.g Total energy, Volume and number of
particles.

Thus it is:

A Strict subset of all possible phase-space points or

Clustered more densely in certain regions of phase-space and less
densely in other.

The objective is to find the precise mathematical form of how these
systems are distributed in phase-space at any point in time.
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Let’s define ρ(X, t) as the ensemble distribution function:

The ensemble distribution function: properties

ρ(X, t) ≥ 0 (51)

∫
V
dXρ(X, t) = 1 (52)

It is a density function !!!

Jose Antonio Garate (Dlab) Classical Mechanics November 22, 2017 42 / 55



Bundle of trajectories in a volume element dXt centered around a
trajectory Xt

All evolving at the same according to Hamilton equations of motion.

How this bundle is distributed in time t?

q

p

q

p

dXtdX0

dt

We will derive an equation for the time-evolution of ρ(X, t)
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Phase-space incompressibility.

No sources or sinks for any volume element.

Members (bundle ) remain constant.

The latter implies that in any volume element Ω in phase-space with a
surface S , the rate of decrease (or increase) of ensemble members in Ω
must equal the rate at which ensemble members leave (or enter) Ω
through the surface S .
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Fraction of phase-space points in volume of phase-space Ω at time t∫
Ω
dXtρ(X, t) (53)

Rate of decrease of phase-space points:

− d

dt

∫
Ω
dXtρ(X, t) = −

∫
Ω
dXt

∂

∂t
ρ(X, t) (54)
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The flux of phase-space points through a surface S. This is the number of
ensemble members per unit area, per unit time passing through the
surface S.

dS
n

∫
S
dSẊt · n̂ρ(Xt , t) =

∫
Ω
dXt∇Xt · Ẋtρ(Xt , t) (55)

The flux is expressed as a fraction of ensemble members. The right side
follows from the divergence theorem.
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Now equating both equations:

−
∫

Ω
dXt

∂

∂t
ρ(X, t) =

∫
Ω
dXt∇Xt · Ẋtρ(Xt , t) (56)

The choice of the volume element Ω is arbitrary, thus we can equate both
integrands and after rearrangement :

∂

∂t
ρ(X, t) +∇Xt · Ẋtρ(Xt , t) = 0 (57)
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now:

∇Xt · Ẋtρ(Xt , t) = Ẋt · ∇Xtρ(Xt , t) + ρ(Xt , t)∇Xt · Ẋt (58)

and from Hamilton equations:

∇Xt · Ẋt = 0 (59)

Finally we get :

∂

∂t
ρ(Xt , t) + Ẋt · ∇Xtρ(Xt , t) = 0 (60)

The last equations defines a total time derivative and it named Liouville’s
equation
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The Liouville equation

dρ(Xt , t)

dt
=

∂

∂t
ρ(Xt , t) + Ẋt · ∇Xtρ(Xt , t) = 0 (61)

Some comments:

ρ(X, t) is a conserved quantity, from LE.

Volume in phase-space is conserved from HE

Thus:

ρ(X0, 0)dX0 = ρ(Xt , t)dXt (62)

The fraction of member in any volume element dX is conserved, and
ensures that we can perform ensembles averages at any point in time.
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Now we can rewrite the LE, remembering that the Hamiltonian generates
the time dependence for any function of p’s and q’s and employing the
poisson brackets formalism :

Ẋt · ∇Xtρ(Xt , t) = {ρ(Xt , t),H(X, t)} (63)

The Liouville equation: poisson bracket formulation

dρ(X, t)

dt
=

∂

∂t
ρ(Xt , t) + {ρ(Xt , t),H(Xt , t)} (64)
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Equilibrium solution of the Liouville equation

A = 〈a(X)〉 =

∫
dXρ(X, t)a(X) (65)

no external driving forces:

H(X, t)→ H(X)

Xt(X, t)→ Xt(X)

At equilibrium, A has not time dependence, thus 〈a(X)〉 has no time
dependence, if so ρ(X, t) has not explicit time dependence

∂ρ(X, t)

∂t
= 0 (66)

By the LE we get :

{ρ(X),H(X)} = 0 (67)

Thus the solution for ρX is any function of H(X)!!!!
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ρ(X) ∝ %(X) (68)

and to ensure normalization:

ρ(X) =
%(X)

Z(X)
(69)

where Z(X) is defined:

Z(X) =

∫
dXρ(X) (70)

Z(X) is the partition function, and it is the essential quantity in
equilibrium statistical mechanics. It measures the number of accessible
microstates.

A = 〈a(X)〉 =
1

Z(X)

∫
dX%(X)a(X) (71)
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Summary

Classical equations of motion from Newton’s laws.
I Concepts of Mechanical work
I Classical equations of motion for many-particle systems.
I Phase space concept.
I Conserved quantities from Newton’s laws.

Lagrangian form of classical mechanics.
I Action, Lagrangian and generalized coordinates.
I Symmetries and conserved quantities.

F Translational Invariance: Momentum is conserved.
F Rotational Invariance: angular momentum is conserved.
F Time invariance: Energy is conserved.

Hamiltonian form of classical mechanics.
I Legendre transform of Lagrangian.
I Hamiltonian equations of motion.
I Flux in phase space.
I Liouville’s equation.
I Foundation of statistical mechanics.
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