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Schedule

Time Mon. Tue Wed. Thur. Fri. Mon. Tue Wed. Thur Fn
20/11/17 21/11/17 22/11/17 23/11/17 24/11/17 27/11/17 28/11/17 29/11/17 30/11/17 01/12/17
9:00 Free Time Free Time Free Time Free Time Free Time Free Time Free Time Free Time Free Time
9:30 Lecture 22:
On the ethics of
the academic
endeavour:
10:15 \where do we go?|
10:30
WvG
11:15 Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break
11:45
Break for lunch, | Break forlunch, | Break forlunch, | Break forlunch, | Break forlunch, | Break forlunch, | Break forlunch, | Break for lunch,
12:30 self-study, self-study, self-study, self-study, self-study, self-study, self-study, self-study, Tutorial 10: **
discussion.* discussion.* discussion * discussion * discussion * discussion.* discussion.* discussion.*
14:00 Tutorial 2: Tutorial 3: Tutorial 4 Tutorial 5: Tutorial 6: Tutorial 7 Tutorial 8: Tutorial 9
Running MD Running MD i f Statistical Analizing MD: | Analizing MD: | Analizing MD: How to prepare a
Tutorial 1 unning Running MD Running MD -
Linux, NLHPC GROMOS | stydents Plans | Students Plans | Students Plans| Mechanics GROMOS | Students Plans | Students Plans barbecue
g Tutorial exercises Tutorial
and OS-dongle
installation
16:00 Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break
17:30 | End of session End of session End of session End of session End of session End of session End of session End of session End of session
20:30 Free time Free time Free time Free time Bfg;ﬂigﬁf &1 Freetime Free time Free time Free time
Good Stock Bar




« primary: “observable”, the quantity that is
directly measured in the experiment

e.g. peak location and intensity in X-ray
diffraction or NMR spectroscopy

secondary: derived from primary data using
some relationship that involves assumptions
and approximations

e.g. structural parameters such as inter-atomic
distances, dihedral angles

Don’ t compare to derived data, e.g. structures

@ Applied Statistical Thermodynamics

Observed vs derived quantities

+ Are we using primary or secondary experimental data?
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W.F. van Gunsteren, J. Dolenc, & A.E. Mark, Curr. Opin. Struct. Biol., 18 (2008) 149-153

* How to calculate a quantity or observable O(r) ?

Choose:

1. (essential) degrees of freedom r
for O(r) electronic
atomic
solvent

2. interaction function 17s(r)
between degrees of freedom (force field)

3. equations of motion or sampling method
P(r)y=¢ /" ®mT Je’vph”(””‘BT dr

4. function QO(r)
contains approximations and assumptions

* Sampling is infinite

@ Applied Statistical Thermodynamics

«  IPs(r) and Q(r) are correct }

generate a Boltzmann-weighted ensemble of conformers:

problem solved,

The Molecular Simulation Approach

Ensemble averages

(0), = [om)Px)dr

are to be compared:

(0),.,

should be compared to

<Q>exp = Qexp

otherwise:

Make other choices
and try again




0 The structure (ensemble) determination
E problem

[y

E. * Measurement of O(r) which depends on molecular conformation r
° Qexp = <Q(r)>:;;zleecules

&

'q', + Canwederiver = (r,,r,,...,ry) from Q0«7 ?

I-E 1. Generally: insufficient 0“7 values to determine r

nu accuracy and consistency of Q0«7 ?

c

19

2. How to deal with averaging <...> ?
Statistical mechanics --> Boltzmann weighting of conformers
Inversion of averaging is impossible

. Do we know the dependence of QO on r, i.e. O(r) ?
How accurate is it? Can we invert it into r(Q) ?
r(Q) may be multi-valued

Applied Statist

. How do we bias the sampling to obtain r such that <QO(r)>,, = 0“7 ?

\E
N

4 Simulate with restraints

&

2 * Bias the coordinates r to make <Q(r)> , approach QO

%‘ « Add an extra potential energy term to the force field

o vtot (r) — Vphys (r) + Vrcslr(r)

E

@ <+ Functional form

|'E — Full or half harmonic at short range

o Vi @) =4KC[(0m) -0 ] for Q1)< Q™ +AQ
'-E — Bounded gradient (force) at long range

I Vit 1=K [(Q0) -0 - iAQ]AQ  for (Q(r)) 2 Q" + AQ
hed

_‘g — Continuous, continuous derivative

14

B Include

o — averaging over time (instantaneous vs. time-averaged)
<L

— averaging over molecules if Q depends on multiple molecules
— enhanced sampling techniques if »(Q) is multi-valued

\&/




@ Applied Statistical Thermodynamics

The structure (ensemble) determination

problem

Examples of (observable) quantities Q(r):

* NOE intensities or

distances (1))~ (r") withp=3o0r6
+ 3J-coupling constants (°J,,)=a(cos*6, ;) +b(cosb, ) +c
+ Residual dipolar couplings (D,,)=a(cos’0,)+b
* Chemical shifts (o)
+ Structure factors (amplitudes) (Fy)
- FRET Efficiencies (E(R.0))
+ CD spectra (I())

@ Applied Statistical Thermodynamics

NOE analysis

* Nuclei influence each other through bonds,
or through space

« COSY:
Correlated spectroscopy
« TOCSY:

Total correlation spectroscopy
— crosspeaks through bonds

« NOESY:
Nuclear Overhauser Effect spectroscopy

— Crosspeaks through space

Chemical shift (ppm)
5
|

— Intensity proportional to <r,7> (p=3 or 6)

— Generally: upper bound to the distance
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@ Applied Statistical Thermodynamics

Atom-atom distance restraining

Distance restraint:
d, involving atoms j and j, derived from experiment

d(7) actual distance at time t  d(r) = [rj(t)—ri(t)]2

Instantaneous distance restraint:

V=0 if d(t)<d,
V"= UK [d)—d,] i dt)>d,
fe=0 if d(t)y<d,
_ __prdr _ XU_(Z) .
fo=-K"[d@t)-d,] 0 if d(t)>d,

)

‘ Applied Statistical Thermodynamics
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Atom-atom distance restraining

Include time averaging

-1/3
P — lt n-3 | i — LNI -3
d(t)—[tb[d(t) dt} d() [N Yd,)

because <INOE> js

B Use 1/3 averaging
proportional to <d-3>

t n=1

Time-average restraint:

V=0 if d(t)<d,
v =K [dn-d, | if d(t)> d,
[ =0 if d(t)<d,
fo=—K"[d()- do]Ni[—%c_i(t)“][—3d(t)‘4]xL(t) if d(t)>d,

r ()

Force becomes smaller with growing N,, so damp the memory
Time-averaging with a memory relaxation time t:

—-1/3

- 11 ,
d(t)= [; _[e‘“" "d(t -1 dt!
0

1_ e*l"/‘[




4 Time-averaging: example
£ + 3 particles: 2 particles (x) fixed at 2 nm distance from each other
i 1 particle freely moving with 2 distance restraints:
> both 0.8 nm length to the fixed particles
>
fel T (o) ' (el | [ (o o
: t=0.0 ps 2 t=0.2 ps 2 t=1.25 ps 2 t=4.0 ps
1 o e 1 . il ‘i (\\\ o
{nml 0 ',\ X ::‘T\ X '.; (rm) D :’" X }Cé‘, x > nmor |‘I/ (nm} 0 :,’ x
! - - 1 ’ ; R />// -
| (-~
-2} Violation 0.18 nm -2t Violation 0nm -} Violation 0.08 nm _,|Violation 0.14\?7113
N i 9.18 nm 0nm 0.08 nm 0.03 nm
2 9 0 1 2 2 9 0 1 2 2 4 0 1 2 21 o0 1 32
(nm] (nm] (nm) (nm)
2 ) : .
(7)) * Refinement applied with
—1/3
< - 11 ,
Q d(t) —_| = — J'ef(/fl )/Td(t _tu)—S dt'
dax tl—e v
& » Average violations calculated from
<L

. -1/3
dt)= Fjd(t—t')3 dt':|
t 0

o

A.E. Torda et al., Chem. Phys. Lett, 157 (1989) 289-294

n Example Tendamistat
£ » small, 74 residue protein, 842 NOE distances from NMR
2 » conflicting NOE distances from the experiment

%‘ — no single structure found that had no violations
o

&

o
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I-E NOE distance 1: H, 15 Tyr - H, 13 Thr
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NOE distance 2: H, 15 Tyr - H, 13 Thr




4 Instantaneous restraints

=

[y

=

>

B | .

£ * Applying instantaneous distance (o) NOE distance 1

= restraints

_qc’ » puts an extra force on the atoms T

= which pulls them to the experimental 3 N A

o] NOE distance = s

c

1

E « Atoms do get close, but quite a __ Violation 0.02 nm

"a' lot of strain is present in the system 5

s (a) NOE distance 2

1))

u _ (o] o2

14 <

a : : T

0+ Small distance fluctuations

<. Yet, small bound violations remain violation 0.04 nm
present 0 :3 |lo |l5 20

7

Time (ps)

Time-averaged restraints

» Time-averaged distance restraints

+ Extra forces on the atoms to enforce
that the NOE distance is fulfilled on
average

« Tyr13 is flipping back and forth

LA NOE distance 1

r (R

Applied Statistical Thermodynamics

T13 . _no vjolation
A
iCh NOE distance 2
B

Y15 OE

. N
517 no violation

] 1 1
- Large distance fluctuations ¢ ° Tim'eo(ps) ° ?
* Yet, no bound violations are

present




Fluctuations: effect of restraints

Root-mean-square atom-positional fluctuation(A) of C, atoms

--- conventional refinement

na
o
-_—
—

— time-dependent restraints

Residue number

Conclusion: conventional refinement restricts atomic
motion too much (instantaneous restraints)

@ Applied Statistical Thermodynamics

Comparison to other structures

DG: one position (violations) in all 9 DG (distance geometry) structures
MD: many positions (no violations)
X-ray: no electron density

DG position (9x)
RMSD small

J. Mol. Biol. 214 (1990) 223-235
Conclusion:

— Convergence to one structure does not indicate that only one structure
fits the experimental data!
— The experimental data are compatible with more mobility than is

‘ Applied Statistical Thermodynamics
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suggested by static modeling




@ Applied Statistical Thermodynamics

The structure (ensemble) determination
problem

Examples of (observable) quantities O(r):

¢ NOE intensities or

distances <I,j>~<rij._”> with p=3or6
 3J-coupling constants (°J.,)=a(cos*6, ;) +b(cosb, ) +c
e Residual dipolar couplings <D, /> - a<cos2 9,/>+b

e Chemical shifts (o)
 Structure factors (amplitudes) (f, )

e CD spectra (I(L))

@ Applied Statistical Thermodynamics

Spin-spin coupling

Nuclei close to each other also influence each others signal
(but not if they are chemically identical)

. | —

Bext + + Bext + —

Signal splits up with a spin-coupling constant J

3 8. 3(ppm)

a

Amount of peaks depends on the number of neighbouring spins




lynamics

Karplus relation
3J (b) = a cos? (p+d) + b cos (p+0) + ¢; O=-60°

J/Hz
— N w - W (=) ~ - o
T T T T T T T

=)

T T T T T T T T T T T T T

21} Peptide

— Bystrov, 1976
Pardi, 1984
— Wang, 1996

3J coupling constant
between HN and Ho
depends on the angle ¢

¢/degree

$(3J ) is a multiple-valued function of 3J
Accuracy of 3J(®) is about 1 Hz

@ Applied Statistical Thermodynamics

Applying restraints

Instantaneous J-value restraining

Ty K" J(oa)—J 2 Instantaneous J (and force)
vi=r [ (@(r)) O] Time-averaged J (and force)

Time-average J-value restraining
Jo [N
— 2

V=K [ J90) -1, |

time

Problem with time averaging:
The force remains if the instantaneous value is already at the target

For distances: -Van der Waals repulsion counteracts it
-Only attractive forces used
-r3 averaging favours short distances

For J-values: time-averaging leads to large fluctuations

Double harmonic J-value restraining

V" = K 100 - 1, F [ 100 -1, T




4 Applying restraints
g « Effect of multi-valued function ¢(J)
o
>
©
10 T T T T 10 T T T T
O\ initial conformation
O \4 restraining force 13 sf converged i
= = conformation
3 S <J>=J
% 6 3 6| 0 4
j c
8 8
()] (o))
£ 4 £ 4t
o o
3 3
c ° Ll restraining for
® initial conformation
0 1 1 1 1 1 0 1 1 1 1 1
-180 -120 -60 0 60 120 180 -180 -120 -60 0 60 120 180
Phi (degrees) Phi (degrees)
153

a The restraint will typically converged to a reasonable solution
2- * But another solution or multiple solutions may be relevant

4 Applying restraints
© . .
¢ -+ Effect of multi-valued function ¢(J)
P )
©
10 10 T T T T
/\ converged
= 8 < sl conformation
T T <J>#J,
g g
% 6 % 6
c c
8 8
£ £ 4f
Q. Q.
3 3
& & M iraini
2 2 | ¢/ restraining force
initial conformation
0 1 1 1 1 1 0 1 1 1 1 1
-180 -120 -60 0 60 120 180 -180 -120 -60 0 60 120 180
Phi (degrees) Phi (degrees)
2

a
2- * The restraint may get locked in a (wrong) local minimum

* The restraining potential should go over barriers to find all
relevant solutions




Search conformational space

Idea: Include information obtained so far during the simulation into
the search scheme: memory function

A. Characterize molecular conformations using:

- cartesian coordinates too many
- torsional angles @, @, X A ‘
- dihedral angles spanning residues: /Ri+3
_ Ris1 Risz
R.

@ Applied Statistical Thermodynamics

M. Christen & W.F. van Gunsteren, J. Comput. Chem. 29 (2007) 157 - 166

B. Penalize the visited conformations by changing the
energy function V as function of time

V(I‘) — vph\'s (r) + Vmemor)r((P)

- potential energy term that pushes molecule out of the current
conformation ¢

e Local elevation search
- @i-ol) 20 (in 2002 called meta-dynamics)

memory _ 7
V@)= AN, e
.

number of conformations for which ¢,>-Ag; < @, < 9%+ Ag; i

@ Applied Statistical Thermodynamics

Thomas Huber et al., J. Comp. Aided Mol. Design 8 (1994) 695




Test case:pentane

)]

i

£ 2 dihedral angles (3 minima each) — 9 low V conformers
= phys

o free SD-simulation (united atoms) N

'8 5|mulat|on time 100 ps, T—300 K, GROMOS force field

-,w}r Y -(wa trans - trans  Jowest

[y ,
— 20y . : e 17, y
* 5 ' phys
PLoEr O -
N o:n.' ver "0t L
» : A
(%) &"J ‘m_"" - B
. c
¢ 2
s
0 3
8 ' 2
]
? 60 Lot - '-“"":, / trans gauche+ gauche- trans
yon A * ¥ ué
§ . T T T T T |
S \ “ L « 3¢ . A -180  -120 -60 0 60 120 180

© A dihedral angle []
. R .
" m‘

- .:’ -‘ '. " . .‘.; .f . -
180 120 €0 0 60 'zo 10
dhecral angle C1-C2-C3-C4 [Cagres)

cis-cis gauche+ gauche+ gauche+ gauche-

Higher-energy conformers are not (yet) sampled
in 100 ps normal MD(SD) simulation highest low higher

Thomas Huber et al., J. Comp. Aided Mol. Design 8 (1994) 695

4 Local elevation search: pentane
g Local-elevation simulation of pentane (united atoms) T=300 K,
S Gaussian local-elevation function with k=5kJ/mol per MD step
3
E simulation time 20ps simulation time 100ps
L §
199 - - T
Pt - ‘:'.....\
o - 'z _
- . ol
e ey Poe S W
AIRRLETPEE LI SN R+ SRS b L iy A
NN 3 BRI SR o Jw\ e J_‘, a8 7".'_-',-';.‘;
' g "-_-!'E-'.‘.S"'..' - ‘, R 1»—}a -\'v’-.-v%-n""‘
g or i’r R _' oL ,.v*,. _{
. RN Y R -
"= e BT S W e g Y
. ... ) . _:2-. =z ms\’z -..- .) v b S n%
T ‘s =N ; S RTI  T f”"‘“ s B
- RN LI ,1:.";_-..‘~..q- b e ',:.‘r......{ P
The ’ 23 SRV UL ) -.f-:p-.%ws»%ﬂ_.---'
B A R R I D T SRR ST RN, S
Taten .:‘.AL':.‘. SO PRI u..i' iat Rt 180 .th‘--’ -;.z‘.;;;.z;._—_isu_u.i.w
-0 o 00 120 1 80 120 60 o w 120 130
cinedral anglke C1-C2-C3.C4 [dogrees| dhedral angle C1-02C3.C4 [dogrees)

Higher-energy conformations are sampled Almost all conformations are sampled
in 20 ps local-elevation MD simulation in 100 ps LE-MD simulation




L]
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Application: 3J-value biasing

Average 3J-coupling constants

j eI dt!

0

- 1
J(r)=—
() Tl_e—t/r

T - memory decay time
Restraining potential is the sum of N, terms

Nle
V()= DV (0)
i=1
which are Gaussian Local Elevation functions, with an extra factor

le J —(0—97 * 12(A9°
Vi (Q)):k rW¢i(l‘)€ (9—=0; )" /2(A¢7)

a possible potential V, at equally separated values of ¢, distance A¢°
N(¢=¢?) in original local elevation formulation replaced by W,(1)

@ Applied Statistical Thermodynamics

Application: 3J-value biasing

Local elevation potential added with weight w,(t)
V() = Ky (1)e™ @4 120487

where L
W (1) = ;£5¢(,,)¢?V’”’(J(t W ()t

Vrest(‘])
1 ifot")in ¢ bin
Opirrap = l
' 0 otherwise
(Ja =T =AY for Ja)> J° + AJ° L
vergan =1 (Ja)-1"+ A1) for J@)<J° - AJ° A
Jay=] (J@) ) for Jt)
0 otherwise AJ* AT°

We add to the V//° potential if:
— We are in the bin i(6¢(t,)¢p)

— Both the average and the instantaneous J value are more than AJ°
away from the target J° (v (J('yand v’ (J(t"))




Why is local-elevation sampling better than instantaneous restraining ?

NO SAMPLING PROBLEM NO SAMPLING PROBLEM SAMPLING PROBLEM

id: V(x)
; solid: real V(x) V(x)
pOtentlal__ dashed: model V(x) —_+ . -
energy \
function | 4 -+
V(x) 1 NO
T { T SEARCH
T{ | keT1 | 1 PROBLEM
low barrier
T T Wl |
coordinate x coordinate x coordinate x
irﬁtial coTn—eCt initial correct correct correct
Result: free MD: OK Result: free MD: wrong (model) Result: free MD: OK
IR-MD: OK IR-MD: OK IR-MD:  wrong
LE-MD: OK LE-MD: OK LE-MD: OK
V(x) T V(x)
T SEARCH
4 PROBLEM
high barrier
Wi | W] |
coordinate x coordinate x coordinate x
initial  correct initial correct correct  correct
Result: free MD: wrong (model) Result: free MD: wrong (model) Result: free MD: wrong (sampling)
IR-MD:  OK IR-MD:  OK IR-MD:  wrong
LE-MD: OK LE-MD: OK LE-MD: OK

Example: GCN4

* parallel two-stranded leucine zipper of the yeast transcriptional activator

— two-stranded structural
motif present in many gene
regulatory proteins

+ 33 residues:

ARG - MET LYS GLN GLUASPLYS — g?
- VAL GLU GLU LEU SER LYS — N-terminal half "‘:ﬁ
GCN4p2-17
-ASN TYR HIS GLUASN GLU -
-VALALA ARG LYS LYS LEU —
C-terminal half
- VAL GLY GLU ARG GCNdp16-31

* how does the zipper form ?
C- terminal is a autonomous helical
folding unit & trigger site for the
coiled-coil formation

PDB ID 1YSA (the GCN4 leucine zipper
binds to the DNA major groove, X-ray
structure)




- GCN4p16-31: NMR structure determination

Experimental data: 787 NOEs and 15 3J,,,, coupling constants

Single-structure refinement using the program XPLOR:

Simulated annealing from 200 different structures
with randomised torsional angles using

- 172 NOE distance restraints
- 14 «- helical hydrogen bond restraints
- 8 o¢-torsional angle restraints (residues 17 — 24)

Result:

A set of 20 lowest energy structures,
indicated as the set of 20 NMR model structures ——

@ Applied Statistical Thermodynami

M.O. Steinmetz et al., PNAS 104 (2007) 7062-7066

NOE and 3J-value analysis of
NMR model structures

— T 18HISB-20GLU
(21ASN-25ARG 18HISB-19LEU 8
21ASN-17TYR \ 18HISB -20GLU ]
0.1 18HISB- 19LEU L ZEGLU .
s |
e | i | |r ik =
g 6 ]
2 -01 ot
—_ =
2 S50 _
B >
o -0.2 -,
g <L
-§ 03+ % 4r 7
L J I 23VAL* 18HISB |
041 . 3 ©
r I 19LEU
0.5 | | L | | L | | | | L 2 L | L | I | I | 1 L
0 20 40 60 80 100 120 140 160 180 2 3 4 5 6 7 8
NOE sequence number exp. 3T value [Hz]

= the set of NMR model structures violates the 3J coupling constants

Are the NMR model structures representative for the real conformational ensemble ?
— improve the protocol for structure determination by including time averaging

Are there inconsistencies between NOEs and 3J values ?
— find a conformational Boltzmann ensemble that satisfies all the primary data




Unrestrained molecular dynamics simulations

NOE distance violation [nm]

= using unrestrained MD simulations and

T T
43A1 force field

53A6 force field

calc. *J-value [Hz]

20 40 60 80 100 120
NOE sequence number

140

two different GROMOS force fields all the

experimental data could not be satisfied

on a 50 ns time scale:

-

-

* 43A1 GROMOS force field
* 53A6 GROMOS force field

w
=
v
o
)
=
o
S

exp. *J-value [Hz]

force field problem ?
sampling problem ?

distance violation [nm]

MD with distance restraints

instantaneous distance restraints: put an extra force on the atoms pulling them
instantaneously to the experimental NOE distance — strain in the system

time-averaged distance restraints: put an extra force on the atoms such that
the NOE distance is fulfilled on average — side chains flipping back and forth

e
P

=}

S
=

S
[\

| instantaneous NOE distance restraining
| time-averaged NOE distane restraining

20 40 60 80 100
NOE sequence number

120

|
140

160 180

NOEs are not compatible
with one structure




MD with instantaneous distance restraints:
average 3J-values

§°]
(o
e instantaneous NOE distance restraining
e time-averaged NOE distance restraining
10 | | | T T |
9 —
oL . _| While restraining distances to the NOEs the
. averaged 3J-values turn out to be
=T . -| incompatible with the experimental 3J-
= . values
n:) 6 ® [ ] —
‘7;1 .
ST i, o - In order to satisfy the 3J-coupling
E RN constants 3J-value restraints should
% also be used in the simulations
3 (— —
2 _
1 | | | | ] | | ]
1 2 3 4 5 6 7 8 9 10
exp. *I-value [Hz]
-

MD simulations with time-averaged NOE distance restraints
and instantaneous restraining on 3J-values
or local elevation biasing on 3J-values

0.1 I time-averaged NOE distance restraining and *J value instantaneous restraining [ * time-averaged NOE distance restraining and *J value instantancous restraining
’V I time-averaged NOE distance restraining and local elevation biasing on *J values * time-averaged NOE distance restraining and local elevation biasing on *J values
10 I L L
0
L 9 .
=l
El s :
5 -0.1 ks
5 -0.
3 T o —
- N
.9 =X
> g 61 * —
5] 2
g-02 1 2 ¢
= - 5 % —
] 5]
= i 3
3
4 .
0.3 -
3 .
P IR T N (NS N RO R B 2 N
0 20 40 60 80 100 120 140 160 18( | | | | | | | |
. 1
NOE sequence number h 5 3 2 s 6 7 3 9 10

exp. 3J-\falu:: [Hz]

Using time-averaged distance restraints based on NOEs and local elevation
biasing on 3J-coupling constants an ensemble of structures was obtained
that satisfies the entire set of experimental data

The results are force field independent
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Structural differences

3-helix
4-helix
+ 5-helix
bend
L R | ] e . L ! N turn
31G NOE time-averaged restraints and "J value instantancous restraints
30V e
29L
28K
27K
26L |
2SR =
JAA |-
23V [«
22E
21N
20E —————— - s e
19L - - e—— nt———
I8SH s PR e e e S ———
17Y |- | e e
16N | Ill'I | ! I ‘I . | 1 I ]
N ! [ ' [ N [ ! I '
% (\]] NOE time-averaged restraints and "J value local elevation biasing
29 L [
28 K |+
27 K | = - oma —— o e of
261 |- e - =
2SR |= —_
24 A - .
23V - - - - -
DR [ omm s mrmimim s — e —— - - —
2N “ o= - -
20 E foe —_—— o ——— i — - —— ]
(3 ) E— B e e —— —_—
R e - - -
17Y |~ -
I6N ! | ! | ! | s | !
0 2 4 6 8 10

simulation time [ns]

Instantaneous restraining artificially restricts the motion
Local-elevation biasing MD allows more motion

@ Applied Statistical Thermodynamics

FRET efficiencies

+ Radiation-free energy transfer between fluorophores D and A

* FRET efficiency

1 R
1+(R/R,)° R.+R°

E(u,,u,,R)=

* Forster radius

qu)%J 1/6
R, = m
n

e and

Ha
K =cos@,, —3cos6, cosO,

» So if we apply a restraint
VAT (0) = L K[ E(uy ity RV~ E° |

» Force is derivative of energy with respect to r
— Gives rise to terms due to R and due to «?

Mp
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FRET efficiencies

+ Small peptide in urea-water mixture
+ Experimental FRET efficiency ~ 0.64

* Free simulation:

Lo

I I | | I I
00 10 20 30 40 50 0 1
time [ns] P [nm"]

(K2 # 2/3)

1 ars O N ARREE 4

E M S ", e v ? ] R Al 1
I8 N ot 1 . )
02+ ’ + 1 IWM)
1 L
510 15
time [ns]

A

1 1 f’
2 4 6
Pmm’]

| | L
0 5 10 15 510 1520 0
time [ns] P

» Efficiency gets focused, still fluctuations in R
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The structure (ensemble) determination
problem

Examples of (observable) quantities O(r):

e NOE intensities or

distances <I,~,,->~<1;,’”> with p =3 or 6
e 3J-coupling constants <31f,_,->=a<00829[,_/>+b<0059,-,_/>+C
e Residual dipolar couplings (D, ,)=a(cos’0,)+b

e Chemical shifts (o)

e Structure factors (amplitudes) (F,,)

e FRET Efficiencies (E(R.0))
e CD spectra (1)

(implemented in GROMOS) RO WVIO
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Summary

When using experimental data to bias the sampling:

1.

2.
3.
4

Use only primary (measured) not secondary (derived) experimental data
Determine their accuracy and test for consistency

Do account for motional averaging

Do not restrain to a measured value of an observable if the function
connecting structure to observable is multiple-valued, but use LE-biasing
to enhance sampling and to compensate force-field deficiencies

Examples:

(time-averaged) distance restraints
Local elevation biased J-value restraining

@ Applied Statistical Thermodynamics

Backup slides

PSEUDOATOM AND
MULTIPLICITY CORRECTIONS
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Practical considerations

Some force fields use united atoms for CH,, CH,, CH; groups

Apply the distance restraint to a virtual atom
calculate the position on the fly from the relevant heavy atoms
transfer the forces to the heavy atoms

The signals of multiple protons may not be distinguishable
— Intrinsically (chemically identical protons, e.g. -CHj;) Iy 2H

— Given the experimental settings ><

Apply the distance restraint to a pseudo atom
calculate the position on the fly from the relevant heavy atoms
transfer the forces to the heavy atoms
additional corrections required to the reference distance
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Pseudo atom corrections

Identical spins are considered to be represented by one pseudo-atom.

A multiplicity correction for the fact that the real signal comes from
more than one atom is added

A pseudoatom correction for the fact that the ‘closest’ of the atoms will
contribute most, while the pseudo atom is further away.




Corrections

Wiithrich (1983)  Fletcher (1996) GROMOS (1996)

corr(Ay Z corr (A) corr (A)
X +1.0 x2°  +0.7 +0.9
) | ) +1.5 31 +0.4 +1.0
| +2.9 xgP 415 +2.2
H ) A
H Q\ H
I /I +2.0 x2W 42,0 +2.1




