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Outline

Biomolecular force fields
— Interactions: bonded, nonbonded, cutoffs

What do we parameterize on
— Structural data, thermodynamic data

GROMOS parameterization
— Free energies of solvation
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Born-Oppenheimer approximation

The motion of atomic nuclei is very much slower than the
motion of the electrons

We can describe the (energy of the) electrons separately, given
the positions of the atomic nuclei

The electrons determine a potential energy surface in which the
nuclei move

Molecular structure ¢ ————— Energy
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Force Field: interaction
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Interacting Particles
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+ Special interaction Terms
— For example restraints on the system
» From experiments (see lecture 11)
* To bias the simulation
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Bond stretch term

* The potential energy function may be made more accurate by
including additional terms

v (e) = %Kf[bi (r) -2 T +K3[ b (r")-t' T + K41 () -2 T

Sometimes people use the accurate Morse potential

I/ibond (rN) -D |:1 _ e—%(”f(f)—b?) :|2

i

* Which is expensive and often not necessary

* In GROMOS we use a quartic bond

bond N 1 2 ’
y (e = Sk 5 ()= (20
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& Bond stretch term
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= * Forces between bound atoms are usually large and it takes a lot of
> . . .

. o) energy to deviate the bond length from its optimal value
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j':’ Bond bO (nm) Kab (108 kJ mol' nm)
[—

E CHn - CHn 0.153 7.15

o Cc-C 0.139 10.8

L C=0 0.123 16.6

_{3 C-H 0.109 12.3

i CHn - OA 0.143 8.18

E NR (His) - Fe 0.221 0.540

[

2— * At room temperature, deviations of up to 0.006 nm are possible

+ Often, we use SHAKE to constrain the bond lengths




@ Applied Statistical Thermodynamics

Bond angle term

The bond angle term is also often approximated with a harmonic
potential.

7 angle (rN) _ Z I/iangle (rN)

angles i
Viangle (I‘N) _ %Kla |:91 (I‘N) _ 910 :|2

It may also be made more accurate by including additional
terms

In GROMOS we use

yoete (rN) = %Kf“ [cos 0, (rN ) —cos6’ :|2
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Bond angle term

Angle 60 (deg) Ke@ (kJ mol)
CHn-CHN-CHn 109.5 520
C-C-C 120.0 560
C-C-H 120.0 505
O-C-N 124.0 730
CHNn-N-C 117.0 635
CH2-S-S 104.0 490

At room temperature deviations of about 10 degrees are possible
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Torsion term
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Torsion term

1 sp3-sp3 bond
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Dihedral Angle (degrees)

Out-of-plane bending

* |s again approximated by a harmonic potential:

()= S ()

oop 1

+ y can also be defined as a improper dihedral
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Nonbonded interactions

All atoms see each other through space @ ,
~% N (N—-1) interactions \.

Bound atoms (1,2 neighbours) and their neighbours (1,3
neighbours) are often excluded because the bonded interactions
already take these into account

Sometimes 1,4 neighbours are treated differently to keep the
proper torsional profile

Often we work with a cutoff for the nonbonded interaction:

Black particles ® oY% o
sees green e J e e
particles only ® o ‘o
i) o
LA o
[ N @

ical Thermodynamics
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Nonbonded interactions

For 5000 atoms:

nonbond interactions
(109)

157

6 8 10 2% 14 none
cutoff distance (A)

Nonbonded interactions are usually the rate determining step in
simulations




@ Applied Statistical Thermodynamics

Vanderwaals interactions

Lennard Jones potential:

r 6 term from dispersion attraction e
r-12 term empirically (simple) X ‘

12 6
O. O.
v.d Waals N\ _ ij _i
promen(e)= Y ag || L -
pairs i<j r,/ l"[j

V\“”V(FU) >

1/6,
o, 260 ry >

A cutoff of 1.4 nm does not make big errors

@ Applied Statistical Thermodynamics

Electrostatic interactions

Coulomb potential

e O
VCoulomb(rN)z Z 1 494 "@ @ €]

pairs i<j 477:808r rij

q;, 9; = partial charges for atoms i and j
g, = dielectrice constant of vacuum
€ = relative dielectric constant of the medium

r

Much larger mistake with a 1.4 nm cutoff

Possible improvements:

— charge-group based cutoff

— reaction-field contributions

— lattice-sum methods to use periodicity

See lectures 14 and 15




Other interactions

 Some force fields show alternative interactions

— Specific hydrogen bond interactions
usually a balance between vdw and electrostatics

— Crossterms, e.g. Energy as function of bond length and
angle: U(r,q)
needed to reproduce vibrational spectra

— Electronic polarization
various models are possible, usually need multiple iterations
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Outline

Biomolecular force fields
— Interactions: bonded, nonbonded, cutoffs

What do we parameterize on
— Structural data, thermodynamic data

GROMOS parameterization
— Free energies of solvation

@ Applied Statistical Thermodynamics




(Biomolecular) force field development

+  GROMOS force field
— Parameterized on primary experimental data
— Simple functional form using as few parameters as possible
+ ~50 atom, bond, bond angle, dihedral types
— Transferable parameters
« Experienced users can ‘guess’ reasonable parameters

« With increased computational power, parameterization became more
elaborate

— small molecule crystallography, infrared spectroscopy
» bond lengths, angles, force constants

— simulations of liquids
* density, heat of vaporisation (D, €, n, 15, @, ...)

— simulations of mixtures
» Excess properties
* Free energy of solvation in different media
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Latest GROMOS force field

* 52 Bond stretch types: 104 parameters
* 54 Bond angle types: 108 parameters
* 45 Torsional angle types: 135 parameters
* 5 Out-of-plane types: 10 parameters
* 54 Van der Waals types: ~150 parameters
* Charges for ~40 groups: ~60 parameters

~550 parameters

All need to be parameterised to work consistently together
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The force field problem
The Force Field Problem

A very small (free) energy differences (kgT = 2.5 kd/mol)
resulting from summation over very many contributions (atoms)
\ \2
108 — 108 must be very accurate

B accounting for entropic effects
not only energy minima are of  energy
importance but whole range of EC)
x-valueswith energies ~kT

must be included in the

force field parameter calibration may have higher energy
but lower free energy
than

coordinate x
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The force field problem

C size problem
the larger the system, the more accurate the individual energy
contributions (from atoms) must be to reach the same overall accuracy

Calibrate force field using thermodynamic data for small molecules in the
condensed phase

keep force field physical + simple —> transferable
computable




Force field development

Choice of calibration set of data, systems, phase, and properties

Type of . Force field
Type of data system Phase Type of properties parameters
molecular geometry:
structural data small . .
(exp.) molecules crystalline solid phase bond lengths, bond bo, 80, Xo
angles
spectroscopic small intra-molecular
data molecules gas phase vibrations: force Kb, Ka, K
(exp.) constants
quantum-chemical
energy profiles small calculation of
(theor.) molecules gas phase torsional-angle Kg 8, m
rotational profiles
electrondensities small quantum-chemical charges
(theor.) molecules gas phase calculation of atom g (initial)
charges
thermodynamic small heat of_vaporls_a_ltlon, van der Waals
molecules, density, partition . .
data mixtures condensed phase coefficients, free Cialhi). Co (i)
(exp.) L L q; (final)
solutions energy of solvation :
dielectric data small condensed phase dielectric permittivity, charges
(exp.) molecules P relaxation of
transport coefficients: Co(ij), Ce (i)
transport data small diffusion. viscosit .
(exp.) molecules condensed phase , y qi
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Outline

* Biomolecular force fields
— Interactions: bonded, nonbonded, cutoffs

 What do we parameterize on
— Structural data, thermodynamic data

* GROMOS parameterization
— Free energies of solvation
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Amino acid solvation

All polar amino acids were too hydrophobic!
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Figure 4. Hydration free energies (kJ mol ') at 7 = 293 K: exper-
imental vs. calculated using the GROMOS96 force field (43a2) (@)

and the Q1.1 force field (O).
A. Villa, A.E. Mark, J. Comput. Chem. 2002, 23, 548-553
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Force field parameterization

1. structural data
- large molecules:  crystal structures
solution structures of proteins

2. thermodynamic data

- small molecules:  heat of vaporization, density
in condensed phase
free energy of solvation in different
solvents

partition coefficients
e, D, n,etc.

3. theoretical data

- small molecules: electrostatic potential and gradient
in gas phase
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Determination of FF Parameters

Calibration sets of small molecules

1. Non-polar molecules
L.D. Schuler, X. Daura, W.F. van Gunsteren, J. Comput. Chem. 2002, 22, 1205-1218

2. Polar molecules

C. Oostenbrink, A. Villa, A.E. Mark, W.F. van Gunsteren, J. Comput. Chem. 2004, 25, 1656-1676

3. lonic molecules
M. Reif, P. Hiinenberger and C. Oostenbrink, J. Chem. Theory Comp. 2012, 8, 3705 — 3723

Polar molecules: Calibration set: 21 compounds, e.g.

2-propanol 4

methanol  CH:——O0H 3C\CH/OH
ethanol CH;—CH, le diethylether
OH H H
butanol oe Ha /Cz\ /Cz\
C C
HSC/ \C/ \OH HsC 0 CHj
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Determination of Force Field Parameters

force field parameter set: 17 parameters

quantities to reproduce:

for all compounds (liquids)

heat of vaporisation
density

for analogues of polar amino acid sidechains:

free enthalpy of solvation:
in cyclohexane
in water

C. Oostenbrink, A. Villa, A.E. Mark, W.F. van Gunsteren, J. Comput. Chem. 2004, 25, 1656-1676

@ Applied Statistical Thermodynamics

Heat of Vaporization for Pure Liquids
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Q Density for Pure Liquids
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Free Energy of Solvation in Cyclohexane

O 43A2 g
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10

20—
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average absolute deviation: 2.2 kJ/mol (53A5)
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B Free Energy of Solvation in Water
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- £ 101 / =
.§ "’_§ I Asn Gl ASP “9 ‘ |
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i} B s H'SO oY / “Thr i
o g 8 7

N 28 a
i In water: 8 | A / |
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@ deviation: Rl 7
;—} 10.3 kJ/mol (53A5) - .

0.9kJ/mol (53A6) wsol o 1 v 1 o111
50 -40 30 20  -10 0 10

experimental AG_ = (kJ/mol)

C. Oostenbrink, A. Villa, A.E. Mark, W.F. van Gunsteren. J. Comput. Chem. 25, 1656 — 1676 (2004)
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GROMOS force fields

Parameter sets in GROMOS get a code, e.g. 54A8

— 54 different atom types (multiple C’s, O’ s, N’ s, etc.)
— A for condensed phase, & for vacuum simulations

— 8 sequential number

Force field history:

— 26C1 First reported GROMOS parameter set (1982)

- 37C4 Standard condensed phase in GROMOSS87

— 43A1 Re-optimized alkanes and some solvents

— 45A4 Re-optimized DNA, Heme, carbohydrates

— 53A5 All polar groups revised, optimized for pure liquids

— 53A6 All polar groups revised, optimized for mixtures

— S4A7 Backbone torsions re-optimized

— 54A8 Charged groups optimized for free energy of solvation
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Different flavours
current developments

53A6,xy Balanced compromise between 53A5 and 53A6 for
oxygen containing compounds

_carbo Force field files specifically for carbohydrates
_beta Force field filed specifically for beta-peptides

Inclusion of electronic polarization: charge on a spring (COS)

Induced dipole
-q,+q connected by spring

Atom
q; (permanent)
Vdw interaction

See lecture 17

Coarse graining: reduce number of degrees of freedom

# See lecture 19
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Building a new topology

Parameterize your molecule
— Relevant experimental data available?

Transferability of parameters:
— select types according to functional groups

Manual assignment of parameters

Automated topology builder

A.K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P.C. Nair, C. Oostenbrink and A.E. Mark,
J. Chem. Theor. Comput. 2011, 7, 4026 — 4037

Always check the parameters for consistency




Conclusions

* Theoretical description of force fields
— Bonds, Angles: harmonic oscillator
— Dihedral angles: cosine series
— Van der Waals: Lennard-Jones interaction with a cutoff
— Electrostatic interactions: Coulomb interactions
* Long range: lattice sum or reaction field

* Force field parameterisation
— Parameterization against primary experimental data

— Latest versions: free energy of solvation in water and
cyclohexane

— Summary of GROMOS force fields
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