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 Schedule 
International Spring School Statistical Thermodynamics 2017
Time Mon. Tue. Wed. Thur. Fri. Mon. Tue. Wed. Thur. Fri.

9:00 Free Time Welcome Free Time Free Time Free Time Free Time Free Time Free Time Free Time Free Time

9:30 Lecture 1: Lecture 4: Lecture 7: Lecture 10: Lecture 13: Lecture 16: Lecture 19: Lecture 22: Lecture 24:

Overview and
Introduction

JAG JAG JAG

JAG JAG

JAG JAG

JAG

Ensembles I
Calculating

properties from
simulations

Multi -resolution
simulations

On the ethics of
the academic 
endeavour:

where do we go?

Left-overs/
questions and

future
perspectives

10:15 Break Break Break Break Break Break Break Break
10:30 Lecture 2: Lecture 5: Lecture 8: Lecture 11: Lecture 14: Lecture 17: Lecture 20: Lecture 25:

Classical
Mechanics II

Ensembles II

Structure
Refinement QM/MM

11:15 CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak
11:45 Lecture 3: Lecture 6: Lecture 9: Lecture 12: Lecture 15: Lecture 18: Lecture 21: Lecture 23: Lecture 26:

Force-Field
Development

Electrostatics

Searching &
Enhanced
Sampling

Students plans II

12:30
Break for lunch,

self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Tutorial 10: **

14:00 Registration Tutorial 2: Tutorial 3: Tutorial 4: Tutorial 5: Tutorial 6: Tutorial 7 Tutorial 8: Tutorial 9:

How to prepare a
barbecueTutorial 1

Statistical
Mechanics
exercisesLinux, NLHPC

and OS-dongle
installation

16:00 CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak
17:30 End of session End of session End of session End of session End of session End of session End of session End of session End of session

20:30 Free time Free time Free time Free time Beer, Science&
Friendship Free time Free time Free time Free time Farewell

Good Stock Bar

CO

CO

Thermodynamics Classical
Mechanics I

CO

CO

20/11/17 21/11/17 22/11/17 23/11/17 24/11/17 27/11/17 28/11/17 29/11/17 30/11/17 01/12/17

How to simulate
using GROMOS

Analizing with 
GROMOS

CO

CO

Boundary 
Conditions I

Boundary
Conditions II

CO

Free energies:
alchemistry

Free energies:
reaction

coordinates

WvG

WvG

Comparison with
Experiments

WvG

WvG

Polarization

WvG

WvG WvG

Students plans I

Running MD
GROMOS 
Tutorial

Running MD
Students Plans

WvG

WvG

Analizing MD:
Students Plans

Running MD
Students Plans

Running MD
Students Plans

Analizing MD:
GROMOS
Tutorial

Analizing MD:
Students Plans

CO: Chris Oostenbrink,  WvG: Wilfred van Gusteren, JAG: José Antonio Gárate
*Campus restaurant, Parque Tecnológico Zañartu
**Football field, Parque Tecnológico Zañartu
Lectures venue: Central Auditorium, 4th floor, Fundación Ciencia & Vida

Molecular 
Simulations
MD/SD/MC

WvG
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MOLECULAR 
MODEL 

Degrees of freedom: 
how much detail do 

we take into 
account? Forces or 

interactions 
between atoms Boundary conditions 

Methods to generate 
coordinates 

  

Ensemble Hamiltonian 

A model for molecular computations 

Sampling 
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 Conformational analysis 

Method    Surrounding   Information    

X-ray diffraction   neighbour molecules  atomic coordinates 
on crystal   solvent molecules  1 conformation 

    counter-ions    

NMR    solvent molecules  interatomic distances 
in solution   (neighbour molecules)  few (1-50) conformations 
  

Computation   solvent molecules?  many (all?) conformations 
(in ’vacuum’?)   (or none)   electronic structure 

       energy levels 
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 Optimize structures 
•  Many computational problems come down to minimising an 

objective function 
•  For instance geometry optimisation: minimize the energy 

•  Compare to a marble rolling down a slope 

O
O

N
H

O

O

O

NH
O

E
(x

) 

x 
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 Find the minimum 
•  Minimise a function: set the derivative to zero 

•  But we have 3N variables ! 
 3N derivatives to set to zero 

•  There are multiple minima ! 
different conformations are  
relevant 

E(
x)

 

x 

0E
x

∂ =
∂
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 Potential energy surfaces 

High Energy 

Low Energy 

          Overhead View    Side View 
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 Conformational sampling 

Mid-energy     lower energy    lowest energy   highest energy 
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 Steepest descent 
•  Frequently used for energy minimization of large (and small) 

molecules 

•  Ideal for calculating minima for complex (I.e. non-linear) 
surfaces or functions 

1.  Start at a certain point on 
the surface 

2.  Calculate E and all ∂E/∂rx  
3.  Take the steepest step down 

 

4.  Repeat 2 and 3 until all  
∂E/∂rx ≈ 0    ( ∂E/∂rx < � ) 

•  Goes down to the closest minimum 

( )1 2 3' / , / , / Tr r E r r rλ= +∇ ⋅ ∇ = ∂ ∂ ∂ ∂ ∂ ∂
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 Steepest descent 

High Energy 

Low Energy 

Makes small locally steep moves down gradient 
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 Conformational searches 

•  We don’t want to find a minimum energy conformation, but 
–  The absolute energy minimum, or sometimes 
–  All important conformations 

•  We have to cross barriers 

•  Systematic search: generate all  
possible conformations and pick 
the one(s) with the lowest energy 

   very inefficient 
•  Sample conformational space 

Monte Carlo 
Molecular Dynamics 
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 Systematic search 
•  Generate all possible conformations and calculate their energy 
•  Pick the best / lowest one 
•  Very inefficient: take for example a small protein 

–  50 amino acids with 2 rotatable torsional angles each (in the 
backbone) 

–  3 possibilities per torsion (trans, gauche+, gauche -) 
–  Total 350*2 = 1047 possibilities to calculate! 

high energy 

low 
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 Conformations 
•  Only those conformations that have a low energy occur in reality 
•  How often does a molecule show a given conformation? 

•  The probability of a certain conformation depends on the Boltzmann 
factor 

( ) /1( ) BU k TP Q e−−= rr
Probability for  
conformation 
defined by r 

“Normalisation 
constant” 

Energy of the  
conformation 

Boltzmann  
constant  

(8.314 J mol-1K-1) 

(Absolute)  
temperature 
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 Phase space 
•  The state of a system is completely determined by  the coordinates and 

momenta (p= m.v) of the constituting particles 
 X = (q, p)  q = (x1,y1,z1,x2,y2,z2,…)   (or we use r) 
   p = (px1,py1,pz1,px2,py2,pz1,…)  (or we use v) 

 
•  The probability of a certain state or configuration is given by 

•  The probability also determines the distribution of different states in an 
ensemble of systems 

( , ) /1( , ) BE k TP Q e−−= q pq p

Total energy,  
including kinetic energy 
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 Partition function 

•  The normalisation constant, Q, is called the partition function 

•  An ensemble is defined by various constants 
 
N  number of particles  
V  volume of the system 
E  energy 

•  Ensemble of systems with various configurations 

( , ) / BE k T
NVTQ e d d−= ∫∫ q p q p
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 Boltzmann 
•  You can visit him at the 

Zentralfriedhof 

•  For the NVE ensemble, the 
entropy is given by  

 S = kB log Q 
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 Experimental quantities 
•  Experimentally determined quantities are usually the average over very 

many molecules or systems 
•  Weighted average of a quantity A may be calculated as 

•  For instance, the dipole moment of  HCl ( µ(r) = q.r )  

( , ) ( , )A A P d d= ∫∫ q p q p q p

r 

P(r) µ

r r0 

µP(r) 

r 
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 Ergodicity 
•  Ergodicity theorem: 

The average of a large number of systems is the same as the average 
over time of a single system 

•  Has been proven for very simple systems, but is generally accepted 

•  So, if we follow a system in time, we generate an ensemble of states 
(q,p) each with the correct probability P(q,p) 

0

1lim ( )
t

t
A A d

t
τ τ

→∞
= ∫

= 
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 Phase space summary 

r 

p 

r 

p 

r 

p 

A single configuration is given by the position and momenta of all particles 

An ensemble is the collection of all possible configurations, with their probabilities 

A trajectory follows the configuration through time 

A point in phase space 

A probability distribution 
 in phase space 

time A continuous trajectory 
 in phase space 
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 Monte Carlo simulation 
1.  Generate a conformation 
2.  Calculate E 
3.  a. If the new energy is less than the previous energy  

 accept that conformation and go back to step 1 
 b. If the new energy is greater than the previous energy  

 accept it if a randomly chosen number is less than e-ΔE/kT 
 otherwise reject it 

4  Go back to step 1 and repeat until done 

•  The accepted conformations represent an NVT ensemble 

High Energy 

Low 

0 (=e-∞) 

1  (=e0) 

P = e-ΔE/kt 

Metropolis criterion 
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 Monte Carlo in liquids 
•  Pick a random particle, move it randomly 

The energy of the new state is 
favourable, this configuration is 
accepted 

The energy of the new state is 
unfavourable, this configuration is 
rejected 

Large movements lead to worse acceptance ratios 
Small movements lead to slow sampling 

 --> optimize to get acceptance ratio ~ 0.5 
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 Monte Carlo for macromolecules 
•  For macromolecules, you have to design your moves cleverly 

Approach 1: move the atoms 
But: bond lengths and angles are 
very stiff, so only very small moves 
are accepted 

Approach 2: rotate a torsional angle 
But: this may lead to large motion 
further in the sequence, and then to 
clashes 

Some success with double torsional moves to 
keep the modifications local 
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Situation at time t+Δt 

Situation at time t 
 
 
 

Force is determined by relative positions 
 

acceleration = force / mass     
Δ velocity = acceleration × Δ t 
Δ position = velocity × Δ t 

 force 

velocity 

position 

Determinism … 
Sir Isaac Newton 

1642 -1727 

Trajectory in time: classical dynamics 
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 Forces from a force field 
•  The force on an atom is defined as the negative derivative of the 

potential energy with respect to the coordinates 

,1
1

,1
1

,1
1

2

2
1

( )

( )

( )

x

y

z

U
F

x
U

F
y
U

F
z

t m

∂= −
∂

∂= −
∂

∂= −
∂

∂= =
∂

1 1
1

r

r

r

x F
a

U is defined by the force 
field with relatively simple 
equations 

The derivatives may be 
calculated analytically 

For simple systems 
(harmonic oscillator) we 
can solve the equations of 
motion exactly 
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new positions 

time t 

time (t+Δt) 

positions 
velocities 

forces 

new velocities 

... Comparable to shooting a movie of 
molecular motion... 

Leap frog algorithm 

Molecular dynamics 
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Hydrogen bonds 

NH2 

NH2 

HO 

HO 
H 

H

O 
H

N 

H 

H 

H

O 

N ? 
Cyclohexane- 

diamine 
Cyclopentane- 

diol 

δ + 
δ - 

δ - 
δ + 

Complex : 

         Experimental   MD simulation 
              Benzene    CCl4   

 
 

ΔGb  [kJ/mol]     -9.3   -11.5        -10.4 

Average binding strength (free enthalpy) : 

Many different binding modes 

Binding equilibrium 
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Formation of the complex 
(camera focuses on the diamine) 

Diol + Diamine + 252 CCl4 Molecules  
2.1 – 2.2.10-9 seconds 

 
Complex formed 
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 Diol + Diamine + 252 CCl4 Molecules  
3.2 – 4.0.10-9 seconds 

… and a nanosecond later … 

Hydrogen bonds 

O " N 

N " O 

the molecules are free again… 
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NH2 

NH2 

HO 

HO 

NH2 

NH2 

HO 

HO 

NH2 

NH2 

HO 

HO 

NH2 

NH2 

HO 

HO 

NH2 

NH2 

HO 

HO 

NH2 

NH2 

HO 

HO 

54% 
 
 
21% 
 
 
8% 

7% 
 
 
4% 
 
 
3% 

Occurrence of different binding modes : 

Life time : 

• Average life time of the complex: 2.10-10 sec (max. 3.10-9 sec) 
• Average life time of a hydrogen bond: 5 .10-12 sec 

Experimentally hardly (or not) possible ! 

Results of the simulation (100 ns) 
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new positions 

time t 

time (t+Δt) 

positions 
velocities 

forces 

new velocities 

... Comparable to shooting a movie of 
molecular motion... 

Leap frog algorithm 

Molecular dynamics 
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 Leap-frog algorithm 

•  Taylor expansions around t0 with ½Δt: 

•  Subtract the first from the second: 

•  Use t0 = t + ½Δt  and v = ∂q/∂t, do the same for v 

( )

( )

2
20 01 1 1

0 02 2 2 2

2
20 01 1 1

0 02 2 2 2

( ) ( )1( ) ( ) (3)
2!

( ) ( )1( ) ( ) (3)
2!

t tt t t t t O
t t
t tt t t t t O
t t

∂ ∂+ Δ = + Δ + Δ +
∂ ∂

∂ ∂− Δ = − Δ + Δ +
∂ ∂

q qq q

q qq q

01 1
0 02 2

01 1
0 02 2

( )( ) ( ) (3)

( )( ) ( )

tt t t t t O
t
tt t t t t
t

∂+ Δ − − Δ = Δ +
∂

∂+ Δ = − Δ +Δ
∂

qq q

qq q

1
2

1 1
2 2

( ) ( ) ( )
( ) ( ) ( )
t t t t t t
t t t t t t
+ Δ = + + Δ ⋅Δ
+ Δ = − Δ + ⋅Δ

q q v
v v a

R
em

ai
ni

ng
 te

rm
s 

ar
e 

of
 th

e 
or

de
r 3

 a
nd

 h
ig

he
r ~

(½
Δt

)3
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 Leap-frog algorithm 
•  There are many integration algorithms 

–  Verlet, Beeman and Leap-frog give identical coordinate 
trajectories 

•  The integration time step Δt should be sufficiently small, such 
that the fastest motion is correctly described 

Δt ≈ T / 10 

Series2

time 
Series2

time 
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 Time step 
•  Fastest motion is the bond vibration: Δt ~ 0.5 fs 
•  Interesting simulations: ps / ns / �s  So very many steps! 

•  Bond vibrattions do not really influence the overall dynamics 
•  At these frequencies, one should treat bonds using QM / relativistically 

•  Better approximation is a fixed bond length: bond constraints (SHAKE 
or Lincs algorithm) 
–  Integrate the equations of motion under the condition that the 

bonds remain at the same length 

•  Using SHAKE or Lincs we can use time steps of 2 fs 
–  Now the angles or the water libration is the fastest motion 



M
od

el
in

g 
Si

m
ul

at
io

n 
B

io
m

ol
ec

ul
es

 Molecular dynamics 
1.  Start at a certain conformation with initial velocities 

2.  Calculate the energy and the force on every atom i: 

3.  From the force (acceleration) update velocity for every atom 

4.  From the velocity update the position 

5.  Propagate through time 

•  Total energy Etot = Epot + Ekin is conserved (class. mech.) 
•  Kinetic energy allows us to go over barriers 
•  If we simulate infinitely long, we get the NVE ensemble 

1 2, ,.( . ).,pot
Ni i r r rF E= −∇
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 Energy conservation 
•  Simulation of liquid argon (256 atoms) 

 
•  The kinetic and potential energy fluctuates considerably 
•  The total energy is conserved 

–  Remaining noise comes from the integration accuracy (Δt) 

•  This explains why we can find new minima: 

Epot 

δEpot=2.5 

δEkin=2.5 

δEtot=0.006 

Epot is low Ekin is high 
 

Epot is high Ekin is low 
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 Stochastic dynamics 
Vacuum 

Implicit solvation 

Stochastic dynamics 

    
F(t) = − ∂V

∂r
−ζp(t)+Fstoch(t)

•  Surface effects (surface tension) 
•  No dielectric screening 
 
•  Surrounding is a continuum with dielectric 

constant ε > 1 
•  Different ε within and outside the solute: 

solving Poisson-Boltzmann equation 
•  Nonpolar interaction proportional to solvent 

accessible surface area 

•  Change of the equations of motion 
•  Additional frictional coefficient represents 

viscosity of solvent 
•  Random (stochastic) force represents 

collision with solvent 
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 History 
Year  molecular system: type, size  length of the simulation 

   in seconds 
 
1957  first molecular dynamics simulation (hard discs, two dimensions) 
 
1964  atomic liquid (argon)        10-11 

 
1971  molecular liquid (water)  5 .10-12 
 
1976  protein (no solvent)    2 .10-11 
 
1983  protein in water    2 .10-11 
 
1989  protein-DNA complex in water        10-10 
 
1997  polypeptide folding in solvent           10-7 
 
2001  micelle formation          10-7 

2010  folding of a small protein                         10-6 
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 Summary 
•  Conformation of a molecule defines a (force field) energy 

–  We can optimize the conformation, by minimizing the energy 
•  The energy determines the probability that a conformation 

occurs 
•  All possible conformations form an ensemble of structures 
•  Experiments give us the average over an ensemble 
•  A trajectory in time approximates the ensemble 

•  Monte Carlo simulations: get the ensemble directly 
•  Molecular Dynamics simulations: get the trajectory in time 

–  Leap-frog algorithm 

•  Bond constraints 
•  Temperature and pressure coupling 
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 Look at the movie – loop dynamics 
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PREVIEW OTHER ENSEMBLES 
Backup slides 
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 Other ensembles 
•  Extensive properties are additive 

Increase with system size: volume, mass, entropy 
•  Intensive properties are not additive 

Stay constant with system size: temperature, pressure 

•  There are pairs of extensive and intensive properties that cannot both be 
constant: 

–  Volume (extensive) and Pressure (intensive) 
–  Energy (extensive) and Temperature (intensive) 
–  Number of particles (extensive) and Chemical potential (µ; intensive) 

•  Choice of which properties stay constant define the ensemble 
–  Microcanonical ensemble: NVE  
–  Canonical ensemble: NVT 
–  Isothermal-isobaric ensemble: NpT 
–  Grand-canonical ensemble: µVT 
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 Other ensembles 
•  Standard MD simulations: NVE-ensemble 
•  Standard MC simulations: NVT-ensemble 

•  MD in NVT-ensemble: 
–  Scale the velocities of the particles in every step in such a way that 

the  average temperature is constant: 

•  MD / MC in NpT-ensemble   
–  Scale the positions of the particles such that the average 

pressure is constant: 

2 21 1
2 2

1 1

1( ) ( ) ( ) ( ) ( )
N N

kin i df B i
i idf B

E t m t N k T t T t m t
N k= =

= = =∑ ∑i iv v

1
3

1( ) ( )
( )

N N

B ij ij
i j i

p t Nk T t F r
V t >

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑∑

But experiments are 
usually at constant 
temperature and 

constant pressure 
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 MD algorithm 
1.  Apply periodic boundary conditions: put atoms in the box 
2.  Calculate the kinetic energy and the temperature 
3.  Calculate the potential energy and the force, F(t) 
4.  Calculate the pressure in the box (depends on F and Ekin) 
5.  Calculate the velocities, v(t+½Δt) , from the force, F(t) (~acceleration, a(t)) 
6.  Scale the velocities to keep <T> constant 
7.  Calculate the positions, q(t+Δt), from the velocities v(t+½Δt) 
8.  Satisfy the bond constraints (SHAKE) 

corrections for q(t+�t) and v(t+½Δt) 
9.  Scale the positions to keep <p> constant 
10.  Set t = t + Δt and return to step 1. 



M
od

el
in

g 
Si

m
ul

at
io

n 
B

io
m

ol
ec

ul
es

 Molecular dynamics 

•  Extract mostly populated conformations from simulation 
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 RMSD: Root mean square deviation 
•  A measure to 

compare two 
structures 

•  Here we compare 
the structures seen 
in the simulation to 
the experimentally 
determined ‘folded’ 
structure 

t [ n s ]

R M S D  [ n m ]

00 5 0 1 0 0 1 5 0 2 0 0

00

0 . 1
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All the same 

all different? 
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 Temperature dependency 

folding equilibrium depends on temperature  
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 Pressure dependency 

folding equilibrium depends on pressure  


