
Statistical Mechanics: Introduction

Jose Antonio Garate

Life Science Foundation

jgarate@dlab.cl

January 20, 2017

Jose Antonio Garate (Dlab) Introduction January 20, 2017 1 / 43



Overview

1 Classical physics

2 Thermodynamics

3 Problems

4 Statistical Mechanics

5 The first Law
Definition
Entropy Definition
The thermodynamic pressure

6 The third law

7 The fundamental thermodynamic relation
Enthalpy
The Helmholtz free energy
The Gibbs free energy

Jose Antonio Garate (Dlab) Introduction January 20, 2017 2 / 43



Classical physics

Classical mechanics in the microscopic world, deals with a large number of
particles that are the constituent of matter. It is assumed that the laws of
classical physics can be applied at the molecular level:

Fi = Fi (r1....., rn, ṙi ) (1)

Fi depends on the positions of the rest of the particles plus a friction term.
Now if the force only depends on the individual terms we say that is
pairwise additive:

Fi (r1....., rn, ṙi ) =
∑
j 6=i

Fi ,j(ri − rj) + F ext(ri , ṙj) (2)

Newton’s second law:
mi r̈i = Fi (r1....., rn, ṙi ) (3)
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Thermodynamics

Phenomenological theory of macroscopic matter.

Provides general relations between macroscopic properties

Based on experimental observations

Jose Antonio Garate (Dlab) Introduction January 20, 2017 4 / 43



Problems

Classical mechanics

Newton’s laws predict the future and past (trajectories) if we know
positions and velocities

Newton’s laws are reversible in time. Time reversal symmetry.

Small number of degrees of freedom

Interparticle forces are highly non-linear

Enormous dynamical complexity N ∼ 1023

No analytical solution

But...

Thermodynamics

Self-consistent framework with no reference to the microscopic world

2nd and 3rd laws prescribes and arrow of time
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Statistical Mechanics

Reconciliation of macroscopic thermodynamics with the microscopic laws
of motion, required the development of a new field, statistical mechanics.

Main innovative ideas:

Macroscopic observables do not strongly depend on the detailed
dynamical motion of every particle, but rather on gross averages.

Apply microscopic mechanical laws in a statistical fashion i.e
probabilities, becoming a link between macroscopic thermodynamics
and microscopic classical mechanics.

Concept of an ensemble: Collection of systems that share common
macroscopic properties.
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Basic Concepts: 1. A thermodynamic system
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Basic Concepts: 1. A thermodynamic system

A macroscopic system

Universe divided into system and its surroundings

Isolated system: No exchange of material or energy via heating

Surroundings produce change in the system
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Basic Concepts: 2. Equilibrium

Thermodynamic state does not change with time, except for very small
fluctuations.

Time independence

History independence. No memory.

Relative simplicity

Operationally, a system is in equilibrium if its properties can be
consistently described by the laws of thermodynamics
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Basic Concepts: 3. Fundamental Thermodynamic
Parameters

Pressure (P)

Volume (V)

Temperature (T)

Number of Moles (n)

...

A thermodynamic state is specified by providing all values of P,V,T,n.
These are measurable quantities that can be obtained experimentally.
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Basic Concepts: 4. Equation of state

Relationship among the thermodynamic parameters prescribing how these
parameters vary from one equilibrium state to another

g(n,P,V ,T ) = 0 (4)

Example:
PV − nRT = 0 (5)
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Basic Concepts: 5. Thermodynamic transformation

A change in the thermodynamic state of the system.

Reversibly: Change is carried out slowly enough, so the system can
adjust to each new external condition. It can retrace its history along
the same path between the end points.

Irreversibly: The opposite
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Basic Concepts: 6. State function

f (n,P,V ,T ), any function that only depends on the initial and final
states. It is not path dependent.
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Basic Concepts: 7. Thermodynamic Work

In order to change the volume of a system, a mechanical compression or
expansion (work) must be performed on it.

dWrev = −PdV (6)
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Basic Concepts: 8. Heating

In order to change the temperature of a system, ”heating” or ”cooling”
must be performed.

dQrev = CdT (7)

C = Specific Heat Capacity. Heating needed to change the temperature of
1 mole by 1 degree.
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The First Law : Definition

∆E = ∆Qrev + ∆Wrev = ∆Qirrev + ∆Wirrev (8)

Conservation of energy statement.

Work is defined with respect to the system, i.e. compression is
positive.

∆E is an state function, ∆Q and ∆W are not.
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Reversible vs Irreversible work

∆Wirrev = −Pext∆V (9)

∆Wrev = −
∫ V2

V1

PdV (10)

Pext < Pint

∆Wrev < ∆Wirrev (11)

An due to the first law:

∆Qrev > ∆Qirrev (12)
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Entropy Definition

By fact we know that real systems are not reversible.

We know that Temperature equalize upon thermal contact

So lets define a function that is related to T

S ≡ Qrev

T
(13)

∆S ≡
∫ 2

1

dQrev

T
(14)

dS ≡ dQrev

T
(15)
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The second law

2

1

Reversible

P

V

Irreversible

What about the entropy of the full cycle ?
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dQrev > dQirrev ∮
dQ

dT
=

∫ 2

1

dQirrev

dT
+

∫ 1

2

dQrev

dT
> 0 (16)

∫ 1

2

dQrev

dT
>

∫ 1

2

dQirrev

dT
(17)

∆S2→1 >

∫ 1

2

dQirrev

dT
(18)

The second law

dQ

T
≤ dS (19)

and for an isolated system
0 ≤ dS (20)

in other words, irreversibility.
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The thermodynamic temperature
Composite system partitioned into A and B

A B

EA,VA,SA,NA EB,VB,SB,NB

Impermeable, 
Insulating wall 

Total Energy, EA + EB

Total Volume, VA + VB

Total N, NA + NB

ST (EA,VA,NA,EB ,VB ,NB) = SA(EA,VA,NA) + SB(EB ,VB ,NB)

Jose Antonio Garate (Dlab) Introduction January 20, 2017 21 / 43



The Partition is replaced by a conducting impermeable wall, and we let the
system evolved towards equilibrium.

A B

EA,VA,SA,NA EB,VB,SB,NB

Thermal Contact

∆ST ≥ 0

at equilibrium: ∆ST = 0
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dST =

(
∂SA
∂EA

)
VA,NA

dEA +

(
∂SB
∂EB

)
VB ,NB

dEB (21)

Due to energy conservation dEA = −dEB

dST =

[(
∂SA
∂EA

)
VA,NA

−
(
∂SB
∂EB

)
VB ,NB

]
dEA (22)

dS = 0 at equilibrium.(
∂SA
∂EA

)
VA,NA

=

(
∂SB
∂EB

)
VB ,NB

(23)
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Empirically, it is known that temperatures equate upon thermal contact,
thus the entropy must be related to temperature.

1

T
≡
(
∂S

∂E

)
V ,N

(24)

Thus, at thermal equilibrium: 1
TA

= 1
TB

or TA = TB
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The thermodynamic pressure I

The Partition is replaced by a movable insulating impermeable wall, and
we let the system evolved towards equilibrium.

A B

EA,VA,SA,NA EB,VB,SB,NB

Movable insulating 
wall

∆ST ≥ 0

at equilibrium: ∆ST = 0
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dST =

(
∂SA
∂VA

)
EA,NA

dVA +

(
∂SB
∂VB

)
EB ,NB

dVB (25)

Due to Volume conservation dVA = −dVB

dST =

[(
∂SA
∂VA

)
EA,NA

−
(
∂SB
∂VB

)
EB ,NB

]
dVA (26)

dS = 0 at equilibrium.(
∂SA
∂VA

)
EA,NA

=

(
∂SB
∂VB

)
EB ,NB

(27)
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Empirically, it is known that pressures equate upon movable contact, thus
the entropy must be related to pressure.

P

T
≡
(
∂S

∂V

)
E ,N

(28)

Thus, at pressure equilibrium: PA
T = PB

T or PA = PB
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The third law

Definition of the absolute value of entropy

lim
T→0

S = 0 (29)

Which implies that all heat capacities go to zero at low T

S(T2,V )− S(T1,V ) =

∫ T2

T1

Cv (T )

T
dT (30)

T1 → 0, CV → 0
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The fundamental thermodynamic relation

∆E = ∆Q + ∆W (any process)
dW = −pdV + µdN + .... (reversible process)
dQ = TdS (reversible process)

Thermodynamic Potential

dS =
1

T
dE +

P

T
dV − µ

T
dN + ... (31)

The total variation of S is:

dS =

(
∂S

∂E

)
V ,N

dE +

(
∂S

∂V

)
E ,N

dV +

(
∂S

∂N

)
E ,V

dN (32)

1
T =

(
∂S
∂E

)
V ,N

, P
T =

(
∂S
∂V

)
E ,N

, − µ
T =

(
∂S
∂N

)
E ,V
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The fundamental thermodynamic relation

dE = TdS − PdV + µdN + ... (33)

The total variation of E is:

dE =

(
∂E

∂S

)
V ,N

dE +

(
∂E

∂V

)
S ,N

dV +

(
∂E

∂N

)
S,V

dN (34)

T =
(
∂E
∂S

)
V ,N

, P = −
(
∂E
∂V

)
S ,N

, µ =
(
∂E
∂N

)
S ,V
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The Legendre transform

Consider a function E (V ) of one variable. The Legendre transform allows
to replace the independent variable V by the derivative ∂E

∂V , which is
convenient in thermodynamics given that state variables are usually
defined as derivatives.

∂E(V )
∂V = P(V )

∂H(P)
∂P = V (P)

E (V ) =
∫ V ′

0 P(V )dV

H(P) =
∫ P′

0 V (P)dP

H(P) + E (V ) = P ′V ′

P'

V'

P

V

H(P)
E(V)
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The Legendre transform II

We define the Legendre transform of the function E (V ) as

H(P) = PV − E (V ) (35)

Thus for any function f (x(y)) the Legendre transform f ∗(y(x)) is defined
as:

The Legendre Transform

f ∗(y(x)) =
∂f (x(y))

∂x
x(y)− f (x(y)) (36)

or

−f ∗(y(x)) = f (x(y))− ∂f (x(y))

∂x
x(y) (37)

Jose Antonio Garate (Dlab) Introduction January 20, 2017 32 / 43



The Enthalpy: H

The Enthalpy, H, is the negative Legendre transform of the energy,
switching from volume to pressure.

H(P,S ,N) ≡ E (V ,S ,N)− ∂E

∂V
V (p) (38)

Enthalpy

H(P, S ,N) = E + PV (39)

dH = TdS + VdP + µdN + ... (40)

*Even though not explicitly stated, all other control variables are kept
fixed.
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The Enthalpy: H II

The total variation of H is:

dH =

(
∂H

∂S

)
P,N

dS +

(
∂H

∂P

)
S ,N

dP +

(
∂H

∂N

)
S,P

dN (41)

T =
(
∂H
∂S

)
P,N

, V =
(
∂H
∂P

)
S ,N

, µ =
(
∂H
∂N

)
S ,P
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The Helmholtz free energy : A

The Helmholtz free energy, A, is the negative Legendre transform of the
energy, switching from entropy to temperature.

A(V ,T ,N) ≡ E (V ,S ,N)− ∂E

∂S
S(T )∗ (42)

Helmholtz free energy

A(V ,T ,N) = E − TS (43)

dA = −SdT − PdV + µdN + ... (44)

*Even though not explicitly stated, all other control variables are kept
fixed.
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Helmholtz free energy: A II

The total variation of A is:

dA =

(
∂A

∂T

)
V ,N

dT +

(
∂A

∂V

)
T ,N

dV +

(
∂A

∂N

)
V ,T

dN (45)

S = −
(
∂A
∂T

)
V ,N

, V = −
(
∂A
∂V

)
T ,N

, µ =
(
∂A
∂N

)
T ,V
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The Gibbs free energy : G

The Gibbs free energy, G, is the negative Legendre transform of the
enthalpy, switching from entropy to temperature.

G (P,T ,N) ≡ H(P, S ,N)− ∂H

∂S
S(T )∗ (46)

Gibbs free energy

G (P,T ,N) = H − TS (47)

dG = −SdT + VdP + µdN + ... (48)

*Even though not explicitly stated, all other control variables are kept
fixed.
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Gibbs free energy: A II

The total variation of G is:

dG =

(
∂G

∂T

)
P,N

dT +

(
∂G

∂P

)
T ,N

dP +

(
∂G

∂N

)
P,T

dN (49)

S = −
(
∂G
∂T

)
P,N

, V =
(
∂G
∂P

)
T ,N

, µ =
(
∂G
∂N

)
T ,P
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Spontaneous Changes

For the free energies, what spontaneous changes will occur?

Typical experimental setup

Total entropy of combined
system:

Spontaneous change, ∆Qrev

absorbed by the system

Volume change ∆V

System

Thermal Bath

T0,P0
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Spontaneous Changes II

1st Law: dQ = dE + P0dV − µdN
The total change in Entropy has two parts:

dS for the system.

-Qrev
T0

for the thermal bath.

dSTot = dS − dQrev

T0
=

T0dS − dE − P0dV + µdN

T0
≥ 0 (50)

or

dE − T0dS + P0dV − µdN ≤ 0 (51)

d [E − T0S + P0V − µN] ≤ 0 (52)

The therm within brackets is known as the ”availability”

Jose Antonio Garate (Dlab) Introduction January 20, 2017 40 / 43



Spontaneous Changes III

N,V,E constant dA = −T0S

N,V,T constant dA = d [E − T0S ]

N,P,T constant dA = d [E + P0V − T0S ] or d [H − TS ]

Spontaneous Changes

NVE constant, ∆S ≥ 0

NVT constant, ∆A ≤ 0

NPT constant, ∆G ≤ 0
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Summary

The first Law :∆E = ∆Q + ∆W

Entropy from Carnot Cycle: ∆S ≡
∫ 2
1

dQrev
T

Second Law: 0 ≤ TdS , for an isolated system.

Fundamental thermodynamic relation : dE = TdS −PdV +µdN + ...

Free energies from Legendre transforms:
I A(V ,T ,N) = E − TS , dA = −SdT − PdV + µdN + ...
I G (P,T ,N) = H − TS ,dG = −SdT + VdP + µdN + ...

Spontaneous Changes

I NVE constant, ∆S ≥ 0

I NVT constant, ∆A ≤ 0

I NPT constant, ∆G ≤ 0

Jose Antonio Garate (Dlab) Introduction January 20, 2017 42 / 43



References

Gould and Tobochnik (2010)

Statistical and Thermal Physics with computer applications

http://stp.clarku.edu/notes/

Princeton University Press.

Tuckerman (2010)

Statistical Mechanics: Theory and Molecular Simulation

Oxford University Press.

McGovern (2004)

Thermal and Statistical Physics

http://theory.physics.manchester.ac.uk/~judith/stat_therm/

The University of Manchester.

Jose Antonio Garate (Dlab) Introduction January 20, 2017 43 / 43

http://stp.clarku.edu/notes/
http://theory.physics.manchester.ac.uk/~judith/stat_therm/

	Classical physics
	Thermodynamics
	Problems
	Statistical Mechanics
	The first Law
	Definition
	Entropy Definition
	The thermodynamic pressure

	The third law
	The fundamental thermodynamic relation
	Enthalpy
	The Helmholtz free energy
	The Gibbs free energy


