Calculation of free energy from molecular simulations

Chris Oostenbrink Institute of molecular modeling and simulation University of Natural Resources and Life Sciences

Outline

- Free energies and drug design
 - Enthalpy, Entropy and Free Energy
 - Actors and effects
- Calculation of free energies from statistical mechanics
 - Free energy perturbation
 - Thermodynamic integration
 - Slow / fast growth
 - One step perturbations

Conclusions

Processes: Thermodynamic Equilibria

Definitions

free energy

The driving force for all physical processes Free energy ΔA ; Free enthalpy $\Delta G (= \Delta A + p \Delta V)$

energy

The internal energy of the systemsEnergy $\Delta E/\Delta U$;Enthalpy ΔH (= ΔE + p ΔV)

entropy

"The number of realization possibilities" Entropy ΔS

Helmholtz / Gibbs equations

 $\Delta A = \Delta E - T \Delta S;$

 $\Delta G = \Delta H - T \Delta S$

Lock and key: binding affinity

Predict binding affinity to prioritize compounds,

safe money on the experiments

The keyhole: the *active site* in a protein

A fitting key: the *active site* with a known binder

Old and new molecules superposed

A new key? The *active site* containing a new molecule

- Interaction between the protein and a ligand
- Affinity is determined by the Free Energy, (≠ potential energy)

Binding to multiple structures

- Docking of 65 substrates in 2500 protein CYP2D6 structures
- Side-chain of Phe483 occupies multiple conformational states

strengthen the interaction

even if it hurts to say goodbye... they have lot's of possibilities

	4			
	Ĩ	3	4	
ree in solutio n	9.98	8.47	7.60	water is being released
complex:				
yr228 OH	1.00	1.00	1.00	
rg283 HE	1.03	0.99	1.00	
rg283 HH	1.28	1.35	1.34	
ly313	0.91	0.50	0.50	
₂ O	2.15	1.87	0.61	water still plays a role
oss of H-bond	3.61	2.76	3.15	
ntropy (kJ/mol)	calculated conform	national entrop	y full entropy	X
–T∆S (3)	15.3	17.0	-5.0	
–T∆S (4)	15.1	3.3	-15.9	^{−−−} CO ₂ H
-ΤΛΛ	0.2	13.7	10.9	11

Applied Statistical Thermodynamics

Direct estimates of ΔG_{bind}

- Can MD simulations be used in a lead optimisation project?
- Estrogen receptor a
 - 36 compounds, 18 training set, 18 test set
 - comparison of
 - Linear Interaction Method from MD simulation

$$\Delta G_{bind} = \beta \Delta \left\langle V_{l-s}^{el} \right\rangle + \alpha \Delta \left\langle V_{l-s}^{vdw} \right\rangle + \delta \Delta \left(\left\langle V_{l-l}^{el} \right\rangle + \left\langle V_{l-l}^{vdw} \right\rangle \right)$$

 the best scoring function (selected out of 10) : HS score linear regression from score to exp. binding free energies

Definitions

free energy

$$A(N,V,T) = -k_B T \ln \left[N! h^{3N} \right]^{-1} \iint \exp\left(-H(\vec{p},\vec{r}) / k_B T\right) d\vec{p} d\vec{r}$$
$$= U - TS$$

energy

$$U(N,V,T) = \left(\frac{\partial A / T}{\partial 1 / T}\right)_{N,V} = \left\langle H(,) \right\rangle_{\vec{p},\vec{r}}$$

entropy

Applied Statistical Thermodynamics

$$S(N,V,T) = -\left(\frac{\partial A}{\partial T}\right)_{N,V} = \frac{U-A}{T}$$
Partition function

$$Z(N,V,T) = \left[N! h^{3N} \right]^{-1} \iint \exp\left(-H(\vec{p},\vec{r}) / k_B T\right) d\vec{p} d\vec{r}$$

Free energy, energy and entropy are defined from statistical thermodynamics

Example: DAAO inhibitors

Three inhibitors of the enzyme D-amino acid oxidase were studied

	H ₃ C N N H CO	P₂H X	CO ₂ H
	1	3 4	X = O X = S
	3->1	3->4	4->1
Calculated val	lues:		
ΔG_{free}	106.3 ±1.5	86.1 ±0.8	20.4 ±1.1
$\Delta G_{\text{complex}}$	113.8 ± 2.2	87.3 ±3.5	36.7 ±2.0
$\Delta\!\Delta G_{bind}$	7.5 ± 3.7	1.2 ± 4.3	16.3 ± 3.1
Experimental	$\Delta\Delta G_{\it bind}$ based on:		
IC ₅₀ ^a	8.2	-0.9	9.1
IC ₅₀ ^b	4.6	0.1	4.6
ITC	9.4	0.8	8.6
SPR°	14.1	1.6	12.4

Applied Statistical Thermodynamics

30 ((I

Overall, the relative binding free energies are very well reproduced

J.H.M. Lange, J. Venhorst, M.J.P. van Dongen, J. Frankena, F. Bassissi, N.M.W.J. de Bruin, C. den Besten, S.B.A. de Beer, C. Oostenbrink, N. Markova and C.G. Kruse, *Eur. J. Med. Chem.* (2011) **46**, 4808 - 4819

Example: ER

- Relative free energy of three compounds
- In three different media (vacuum, solution, protein)
- In 11 discrete steps, forward and backward TI

Table	4.	ΤI	Results	(kJ	mol⁻	$^{-1})^{a}$
-------	----	----	---------	-----	------	--------------

Applied Statistical Thermodynamics

30<mark>K(</mark>1

		DES 🗲	► E2	DES ↔ GEN			
TI	for- ward	back- ward	hysteresis	for- ward	back- ward	hysteresis	
vacuum solvent protein $\Delta\Delta G_{solv}$ $\Delta\Delta G_{bind}$ (expt)	76.3 79.0 80.4 2.8 <u>1.4</u> 3. 0.7	$76.181.678.25.5-3.48^{b}79c$	$0.2 \\ -2.6 \\ 2.2 \\ -2.7 \\ 4.8$	$187.1 \\ 151.5 \\ 173.1 \\ -35.6 \\ 21.6 \\ 11 \\ 21.$	$ \begin{array}{r} 186.9 \\ 157.3 \\ 165.3 \\ -29.5 \\ 8.0 \\ .3^{b} \\ 69^{c} \\ \end{array} $	$0.2 \\ -5.8 \\ 7.8 \\ -6.0 \\ 13.6$	

conformational space

Free energies

	Sugar	ΔG_{water}	∆G _{prot}	ΔΔG _{bir}	_{nd} [kJ/mol]		
X	β-D-glucose	31.7	22.5	-9.1			
	β-D-mannose	37.9	46.7	8.7	Sugar	ΔG _{β-α}	ΔG _{β-α}
	β-D-galactose	34.5	29.2	-5.3	U	exp.	calc.
	β-D-talose	40.8	41.7	0.8	D-glucose	-1.2	-2.8
Ě	α-D-glucose	34.4	31.5	-2.9	D-mannose	1.8	4.1
	α-D-mannose	33.9	35.9	2.1	D-galactose	-1.7	-1.7
Ģ					D-allose	-4.1	-4.7
	β-D-gulose	27.6	26.6	-1.0	D-altrose -1.1	-1.0	
2	β-D-idose	32.7	40.0	7.3	D-gulose -4.8	-3.7	
	α-D-allose	31.6	35.8	4.2	D-idose	-0.3	0.1
	α-D-altrose	29.7	38.2	8.6			
3	α-D-gulose	31.3	36.0	4.7			
9	α-D-idose	32.6	36.3	3.7			
	β-L-glucose	30.8	40.1	9.3	Sugar	$\Delta\Delta G_{bind}$	ΔΔG _{bind}
	β-L-mannose	30.1	35.3	5.2		exp .	
	β-L-galactose	28.0	44.3	16.3	D-giucose D-mannose	12.3	10.9
KU)	β-L-talose	30.4	29.9	-0.5	D-galactose	0.6	3.7
\mathcal{P}	α-L-glucose	31.2	62.0	30.8	D-talose	11.5	5.6
	α-L-mannose	27.2	39.1	12.0	L		

Applied Statistical Thermodynamics

Conclusions

- Free energy calculations for e.g. drug design / lead optimisation
 Enthalpic and entropic effects should be included
 - Statistical mechanics and thermodynamic cycles
 - Efficient calculations
 - Unphysical intermediates
- Different methods available
 - Docking and scoring
 - Empirical free-energy methods
 - Free energy perturbation
 - Thermodynamic integration
 - One-step perturbation from a specialized reference state
- Protein flexibility and multiple binding conformations contribute
- Accuracy ~ 2.5 kJ/mol