

Ensembles I Counting microstates

Chris Oostenbrink Institute of molecular modeling and simulation University of Natural Resources and Life Sciences

Balls and buckets

- What if the teacher was not fair initially?
 - The 'correct' distributions will appear after enough steps
- Analogies:
 - The number of balls remains constant (constant energy)
 - No kid can have less than 0 balls (ground-state energy is minimum)
- If M approaches infinity, we reach the thermodynamic limit
 P(g) becomes very sharply peaked around <g>
- Two approaches to get P(B) (ergodicity)
 - Follow one kid for a long time: time average (MD)
 - Monitor the averages over all kids: ensemble average (MC)

Isolated systems

- No heat transfer, no work (mechanical or chemical):
 - Constant number of particles, volume and energy: NVE

- At constant *E*, any individual particle can still have an energy E_k
- If N_k particles have energy E_k we can write that

$$E = \sum_{k} N_{k} E_{k} \qquad N = \sum_{k} N_{k}$$

For the game, this was the total number of kids *N* and the total number of balls *M*. With N_k kids having k balls:

$$M = \sum_{k} N_{k} k \qquad N = \sum_{k} N_{k}$$

Isolated systems

- The individual particles have an energy E_k
- They may exchange energy through collisions
 - (passing the balls around)
- The distribution of positions and velocities does not depend on the kind of collisions
- Rather we make a fundamental assumption:
 - All possible configurations of the system with the same overall energy are equally likely

Enforce	total	energy
---------	-------	--------

• If the total energy is forced to be 3ε list all possible states

		$S = (k_1, k_2)$	(k_2, k_3, k_4)		<i>N</i> =	$= (N_0, N_1)$	$,N_2)$
#	<i>k</i> ₁	<i>k</i> ₂	k ₃	<i>k</i> ₄	N ₀	<i>N</i> ₁	<i>N</i> ₂
1	0	0	0	2	3	0	1
2	0	0	2	0	3	0	1
3	0	2	0	0	3	0	1
4	2	0	0	0	3	0	1
5	1	1	1	0	1	3	0
6	1	1	0	1	1	3	0
7	1	0	1	1	1	3	0
8	0	1	1	1	1	3	0

Applied Statistical Thermodynamics

Eight states are possible, with two distinct distributions

The fundamental assumption says that all eight are equally likely

Applied Statistical Thermodynamics

The possibilities of distributing

- We need to calculate the number of possibilities to get a given distribution
- If I have N objects, 1, 2, 3, ... N, I can list them in N! ways
 - N=3: (1 2 3) / (1 3 2) / (2 1 3) / (2 3 1) / (3 1 2) / (3 2 1)
 - First pick one (*N* possibilities), pick the next (*N*-1 possibilities), etc. until I have to pick the last one (1 possibility)
 - N(N-1)(N-2)...1 = N!

If I have N objects and I want to distribute them in 2 groups

- N=3, M=1: (1 | 2 3) / (2 | 1 3) / (3 | 1 2)
- We don't want to count (1 | 3 2) / (2 | 3 1) / (3 | 2 1) separately
- Total number of possibilities is 3! / (1! 2!) = 6/(1*2) = 3
- In general, dividing N objects in two classes with M and N-M

$$W = \begin{pmatrix} N \\ M \end{pmatrix} = \frac{N!}{M!(N-M)!}$$

Number of possibilities

• So, then we can write

Applied Statistical Thermodynamics

$$\ln W(\mathcal{N}) = \ln N! - \sum_{k}^{\infty} \ln N_{k}!$$
$$= N \ln N - N - \sum_{k}^{\infty} N_{k} \ln N_{k} + \sum_{k}^{\infty} N_{k}$$
$$= N \ln N - \sum_{k}^{\infty} N_{k} \ln N_{k}$$
$$= -\sum_{k}^{\infty} N_{k} (\ln N_{k} - \ln N)$$
$$= -N \sum_{k}^{\infty} \frac{N_{k}}{N} \left(\ln \frac{N_{k}}{N} \right)$$
$$= -N \sum_{k}^{\infty} P(k \mid \mathcal{N}) \ln P(k \mid \mathcal{N})$$

Redistribution of particles over the states at constant NVE is a spontaneous process, for which Entropy increases

Entropy is proportional to N (extensive variable)

Boltzmann's suggestion

· Boltzmann postulates that the statistical entropy is

$$S(\mathcal{N}) = k_B \ln W(\mathcal{N})$$

- In the thermodynamic limit $N \rightarrow \infty$
 - The statistical entropy becomes the thermodynamic entropy

$$S(U,V,N) = k_B \ln W(\mathcal{N}^*) = -Nk_B \sum_{k} P(k) \ln P(k)$$

Similarly, the thermodynamic energy is approached by the total energy of the particles

$$U = E = \sum_{k}^{\infty} N_{k} E_{k}$$

<page-header><section-header><text><text><equation-block><text>

Applied Statistical Thermodynamics

Microcanonical ensemble

- Transform from a discrete enumeration to continuous variables
- The number of possible configurations is called the density of states or the partition function

$$W(E,V,\mathbf{N}) = \Omega(E,V,\mathbf{N}) = \frac{1}{N!} \frac{1}{h^{3N}} \iint d\mathbf{q} d\mathbf{p}$$

- h is the quantum mechanical volume of a microstate in phase space (has unit of mass-length²/time)
- The factor **N**! comes from the indistinguishability of the particles
- The normalization holds

$$\frac{1}{N!}\frac{1}{h^{3N}}\iint P(\mathbf{p},\mathbf{q})d\mathbf{q}d\mathbf{p} = 1$$

 and we can calculate the expectation value (average) of any quantity A

$$\langle A \rangle_{NVE} = \frac{1}{N!} \frac{1}{h^{3N}} \iint P(\mathbf{p}, \mathbf{q}) A(\mathbf{p}, \mathbf{q}) d\mathbf{q} d\mathbf{p}$$

Another example

The distribution is then

$$\mathcal{N} = (N_0, N_1, N_2)$$

= $(N_0, 2N - 2N_0 - U/\varepsilon, N_0 - N + U/\varepsilon)$

· And we can also write

$$W(\mathcal{N}) = \frac{N!}{N_0! N_1! N_2!}$$

$$S = k_B \ln W(\mathcal{N}) = k_B \ln \left[\frac{N!}{N_0! (2N - 2N_0 - U/\varepsilon)! (N_0 - N + U/\varepsilon)!} \right]$$

this is something we can even calculate in Excel (for N = 50)

Determine the most likely distribution

• We want to find the distribution that maximizes

$$\ln W(\mathcal{N}) = -\sum_{k}^{\infty} N_k \ln \frac{N_k}{N}$$

• Under the conditions that *N* and *E* are constant

$$N = \sum_{k}^{\infty} N_{k} \qquad E = \sum_{k}^{\infty} N_{k} E_{k}$$

Formulate the constraints as Lagrange multipliers

$$N - \sum_{k}^{\infty} N_{k} = 0 \qquad E - \sum_{k}^{\infty} N_{k} E_{k} = 0$$

· And define an alternative function to maximize

Determine the most likely distribution

• We want to maximize the function

$$\Phi(\mathcal{N}) = \ln W(\mathcal{N}) - \alpha \left(N - \sum_{k}^{\infty} N_{k} \right) + \beta \left(E - \sum_{k}^{\infty} N_{k} E_{k} \right)$$
$$= -\sum_{k}^{\infty} N_{k} \ln \frac{N_{k}}{N} - \alpha \left(N - \sum_{k}^{\infty} N_{k} \right) + \beta \left(E - \sum_{k}^{\infty} N_{k} E_{k} \right)$$

• The derivative with respect to any N_k gives

$$\frac{\partial \Phi(\mathcal{N})}{\partial N_k} = -\ln \frac{N_k}{N} - N_k \frac{N}{N_k} \frac{1}{N} + \alpha - \beta E_k = 0$$

• and from that we derive

$$\ln \frac{N_k}{N} = -1 + \alpha - \beta E_k$$
$$P(k) = e^{\alpha - 1} e^{-\beta E_k} = Q^{-1} e^{-\beta E_k}$$

So the probability of a state k is proportional to $\exp(-\beta E_k)$

What is Q?

• The normalization constant Q is readily determined

$$N = \sum_{k}^{\infty} N_{k}$$

• so that means that

$$\sum_{k}^{\infty} P(k) = \sum_{k}^{\infty} \frac{N_{k}}{N} = \frac{N}{N} = 1$$

and thus

$$\sum_{k}^{\infty} P(k) = \sum_{k}^{\infty} Q^{-1} e^{-\beta E_{k}} = 1$$
$$= \frac{1}{Q} \sum_{k}^{\infty} e^{-\beta E_{k}} = 1$$
$$Q = \sum_{k}^{\infty} e^{-\beta E_{k}}$$

Q is the partition function of the canonical ensemble. We will see it come back often

and what is β ?

• That is not so straightforward. We start from the characteristic equation for the total energy

$$dU = -PdV + \sum_{i=1}^{N} \mu_i dn_i + TdS$$

• and we look at the temperature

$$T = \left(\frac{\partial U}{\partial S}\right)_{N,V}$$

• Using a chain rule towards β

$$T = \left(\frac{\partial U}{\partial \beta}\right)_{N,V} \left(\frac{\partial \beta}{\partial S}\right)_{N,V} = \left(\frac{\partial U}{\partial \beta}\right)_{N,V} \left/ \left(\frac{\partial S}{\partial \beta}\right)_{N,V} \right|_{N,V}$$

towards β

• The thermodynamic energy *U*, is the expectation value <*E*>

$$U = \langle E \rangle = \sum_{k}^{\infty} N_{k} E_{k} = N \sum_{k}^{\infty} P(k) E_{k}$$

which gives

$$\left(\frac{\partial U}{\partial \beta}\right)_{N,V} = N \sum_{k}^{\infty} E_{k} \frac{\partial P(k)}{\partial \beta}$$

• and for the entropy we had

$$S(U,V,N) = -Nk_B \sum_{k} P(k) \ln P(k)$$
$$\left(\frac{\partial S}{\partial \beta}\right)_{N,V} = -Nk_B \sum_{k}^{\infty} \left(\ln P(k) + 1\right) \frac{\partial P(k)}{\partial \beta}$$

• Because $\sum P(k) = 1$ $\sum \frac{\partial P(k)}{\partial \beta} = 0$

$$\left(\frac{\partial S}{\partial \beta}\right)_{N,V} = -Nk_B \sum_{k}^{\infty} \ln P(k) \frac{\partial P(k)}{\partial \beta}$$

Summary

- For a system of *N* particles and a constant energy *E*:
 - There are many different configurations possible
 - Every configuration has the same probability
 - Various configurations lead to the same distribution
 - The system will adopt the most likely distribution
 - The most likely distribution corresponds to the highest entropy, S
 - Maximize the number of possibilities to get a certain distribution, under the condition that *N* and *E* are constant
 - Leads to Boltzmann distribution, with the probability for any particle to be in state *k*: $P(k) = Q^{-1}e^{-\beta E_k}$
 - Q is the partition function
 - $-\beta = 1/k_BT$

Summary

- Any microstate with constant N, V, E has equal probability
- Boltzmann linked the statistical entropy to
 - the number of different states
 - the number of microstates
 - the phase space integral
- From the microcanonical ensemble (NVE) we can derive all other ensembles:

 Canonical ensemble 	(NVT)
- Isothermal-isobaric ensemble	e (<mark>N</mark> PT)

- Grand-Canonical ensemble (μVT)
- ...

Backup slides

Some maths – Lagrange multipliers

• We need to minimize or maximize a function $f(x_1, x_2, ..., x_n)$: solve

$$df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n = 0 \qquad \text{change df in } f \text{ should be zero}$$

- If we want to find the solution, under specific conditions, we can formulate a constraint in the form g(x₁,x₂,...,x_n) = 0
- Then the easy solution to df = 0 by setting all ∂f/∂x=0 does not work, because g(x₁,x₂,...,x_n) makes that the dx_i are dependent:

$$dg = \frac{\partial g}{\partial x_1} dx_1 + \frac{\partial g}{\partial x_2} dx_2 + \dots + \frac{\partial g}{\partial x_n} dx_n = 0 \qquad \text{is zero because} \\ g \text{ is constant}$$

Instead, we solve this equation

$$\left(\frac{\partial f}{\partial x_1} + \lambda \frac{\partial g}{\partial x_1}\right) dx_1 + \left(\frac{\partial f}{\partial x_n} + \lambda \frac{\partial g}{\partial x_n}\right) dx_2 + \dots + \left(\frac{\partial f}{\partial x_n} + \lambda \frac{\partial g}{\partial x_n}\right) dx_n = 0$$

Now, the dx_i are independent: set the terms in () to zero and solve for the Lagrange multiplier λ

Some maths – Lagrange multipliers

Example

Applied Statistical Thermodynamics

BO ((

Applied Statistical Thermodynamics

• Find the stationary points of the function $f(x,y)=4x^2+3x+2y^2+6y$ under the constraint g(x,y) = y - 4x - 2 = 0

$$\frac{\partial f}{\partial x} = 8x + 3 \qquad \frac{\partial f}{\partial y} = 4y + 6$$
$$\frac{\partial g}{\partial x} = -4 \qquad \frac{\partial g}{\partial y} = 1$$
$$\left(\frac{\partial f}{\partial x} + \lambda \frac{\partial g}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y} + \lambda \frac{\partial g}{\partial y}\right) dy = 0$$
$$(8x + 3 + \lambda(-4)) dx + (4y + 6 + \lambda) dy = 0$$

• Gives a set of three equations with three unknowns:

$8x - 3 - 4\lambda = 0$		$x = -59/_{72}$
$4y + 6 + \lambda = 0$	\Rightarrow	$y = -\frac{23}{18}$
y - 4x - 2 = 0		$(\lambda = \frac{8}{9})$

Backup slides

LINK TO THERMODYNAMICS

Link to thermodynamics

- Solution is very similar to the individual particles earlier
- The probability that we have E₁ for system 1 (and also E₂ for system 2) is proportional to the number of possibilities

 $P(\underline{E}_1) \propto \Omega_1(\underline{E}_1)\Omega_2(\underline{E}_2) = \Omega_1(\underline{E}_1)\Omega_2(\underline{E} - \underline{E}_1)$

The maximum of this is

$$\frac{\partial}{\partial E_1} \Omega_1(E_1) \Omega_2(E - E_1) = \frac{\partial \Omega_1(E_1)}{\partial E_1} \Omega_2(E - E_1) + \Omega_1(E_1) \frac{\partial \Omega_2(E - E_1)}{\partial E_2} \cdot -1 = 0$$

$$\frac{\partial \Omega_1(E_1)}{\partial E_1} \Omega_2(E - E_1) = \Omega_1(E_1) \frac{\partial \Omega_2(E - E_1)}{\partial E_2}$$

$$\frac{1}{\Omega_1(E_1^*)} \frac{\partial \Omega_1(E_1)}{\partial E_1} \bigg|_{E_1 = E_1^*} = \frac{1}{\Omega_2(E - E_1^*)} \frac{\partial \Omega_2(E - E_1)}{\partial E_2} \bigg|_{E_1 = E_1^*}$$

$$\frac{\partial}{\partial E_1} \ln \Omega_1(E_1^*) = \frac{\partial}{\partial E_2} \ln \Omega_2(E - E_1^*)$$

This will be an important finding when we introduce the canonical NVT ensemble

Applied Statistical Thermodynamics

And mechanical equilibrium

- Let's consider two systems at constant N that can exchange heat and mechanical volume
- Together they form a closed and isolated system

- System 1: N_1 fixed; E_1 , V_1 variable
- System 2: N_2 fixed; E_2 , V_2 variable
- Two systems together $E = E_1 + E_2$ and $V = V_1 + V_2$ are constant
- what are the most probable values of E_1 and E_2 and of V_1 and V_2 in the systems?
- write these optimal values as E_1^* and $E_2^* = E E_1^*$ V_1^* and $V_2^* = V V_1^*$

The volume derivatives

$$\frac{\partial}{\partial V_1} \Omega_1(E_1, V_1) \Omega_2(E - E_1, V - V_1) = \frac{\partial \Omega_1(E_1, V_1)}{\partial V_1} \Omega_2(E - E_1, V - V_1) + \Omega_1(E_1, V_1) \frac{\partial \Omega_2(E - E_1, V - V_1)}{\partial V_2} \cdot -1 = 0$$

• which we reshuffle to

So

$$\begin{aligned} \frac{\partial \Omega_{1}(E_{1},V_{1})}{\partial V_{1}} \Omega_{2}(E-E_{1},V-V_{1}) &= \Omega_{1}(E_{1},V_{1}) \frac{\partial \Omega_{2}(E-E_{1},V-V_{1})}{\partial V_{2}} \\ & \frac{1}{\Omega_{1}(E_{1},V_{1}^{*})} \frac{\partial \Omega_{1}(E_{1},V_{1})}{\partial V_{1}} \bigg|_{V_{1}=V_{1}^{*}} &= \frac{1}{\Omega_{2}(E-E_{1},V-V_{1}^{*})} \frac{\partial \Omega_{2}(E-E_{1},V-V_{1})}{\partial V_{2}} \bigg|_{V_{1}=V_{1}^{*}} \\ & \frac{\partial}{\partial V_{1}} \ln \Omega_{1}(E_{1},V_{1}^{*}) &= \frac{\partial}{\partial V_{2}} \ln \Omega_{2}(E-E_{1},V-V_{1}^{*}) \end{aligned}$$

