Ensembles |
Counting microstates

Applied Statistical Thermodynamics

Chris Qostenbrink Institute of molecular
Institute of molecular modeling and simulation modeling and simulation
| KU University of Natural Resources and Life Sciences g

Schedule

(1]
: Time Mon. Tue. Wed. Thur Fri. Mon. Tue. Wed Thur Fri
> 20/11/17 21/11/17 22/11/17 23/11/17 24/11/17 271117 28/11/17 29/11/17 30/11/17 01/12/17
u 9:00 Free Time Free Time Free Time Free Time Free Time Free Time Free Time Free Time Free Time
(o] 930 Tecture 22
E On the ethics of
U the academic
0 endeavour:
10.15 [ Break | Break [ Break | Break | Break | Break |  Break _|wheredowego? _ Break |
= 10:30
WvG
E 1115 Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break
11:45
(]
()]
o m— Break for lunch, | Break forlunch, | Break forlunch, | Break forlunch, | Break forlunch, | Break forlunch, | Break forlunch, | Break forlunch,
“ 12:30 self-study, self-study, self-study, self-study, self-study, self-study, self-study, self-study, Tutorial 10:
m discussion.* discussion.* discussion.* discussion.* discussion.* discussion.* discussion* discussion *
d 14:00 Tutorial 2: Tutorial 3: Tutorial 4: Tutorial 5: Tutorial 6: Tutorial 7 Tutorial 8 Tutorial 9:
m ) Running MD | Running MD | Running MD | Running MD Statistical Analizing MD: | Analizing MD: | Analizing MD: |HOW {0 prepare a
Li TLKO:‘?_IJPC GROMOS | stydents Plans | Students Plans StudenrsgPlans Mechanics GROMOS | Students Plans | Students Plans barbecue
u inux, Tutorial exercises Tutorial
and OS-dongle
w installation
(]
— 16:00 Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break
Q 17:30 | Endofsession | Endofsession | Endofsession | Endofsession | Endofsession | Endofsession | Endofsession | End ofsession | End of session
n 20:30 Free time Free time Free time Free time Be‘égesncdfﬂﬁ)e e Free time Free time Free time Free time
< Good Stock Bar




What is statistical mechanics about?

* Provide the link between macroscopic properties and the
molecular (nanoscopic) particles.
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A game

States and entropy

* Microcanonical ensemble
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Balls and buckets

A game with N children sitting in a circle,

girls, "', boys

 Teacher divides M balls at random over them

o

O. O,
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Balls and buckets

The teacher picks a random kid

W
\Qo

O
®e
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If it has a ball, it has to give it to another random kid

@
3 0
RO

This is repeated until
the kids are bored




) Applied Statistical Thermodynamics

\E/

P(g)

Balls and buckets

The average number of balls per kid is <B>=M/N

The probability that any kid has 0, 1, 2, 3, ... balls appears to be
P(B) — Ce_B/<B>

What is the average number of balls collected by the girls?
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Gaussian distribution
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Balls and buckets

What if the teacher was not fair initially?
— The ‘correct’ distributions will appear after enough steps

Analogies:
— The number of balls remains constant (constant energy)

— No kid can have less than 0 balls (ground-state energy is
minimum)

If M approaches infinity, we reach the thermodynamic limit
— P(g) becomes very sharply peaked around <g>

Two approaches to get P(B) (ergodicity)
— Follow one kid for a long time: time average (MD)
— Monitor the averages over all kids: ensemble average (MC)
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Isolated systems

No heat transfer, no work (mechanical or chemical):
— Constant number of particles, volume and energy: NVE

DOHE

At constant E, any individual particle can still have an energy E,
If \V, particles have energy E, we can write that

E=YNE, N=YN,
k k

For the game, this was the total number of kids N and the total
number of balls M. With /V, kids having k balls:

M=) Nk N=YN,
k k
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Isolated systems

The individual particles have an energy E,
They may exchange energy through collisions
— (passing the balls around)

The distribution of positions and velocities does not depend on
the kind of collisions

Rather we make a fundamental assumption:

— All possible configurations of the system with the same
overall energy are equally likely




Let’s look at an example

Individual particles have three energy levels:

- E;=0 E,=¢ E, =3¢
* For N particles we can define the system state S
- S= (kl,kz,...,kN) (specify energy level for all particles)

And we can write the system distribution
— N'=(N,,N,,N,) (specify number of particles at every level)

E=YNE, N=YN,
k k

Possible state of
the system

S=(2,1,1,0)

Example for N = 4

w
™

N =(1,2,1)
E=1-3¢+2-€+1-0
=5¢
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Energy levels for 1 2 3 4
every particle

Enforce total energy

» If the total energy is forced to be 3¢ list all possible states

S =(k, .k, ,k;,k,) N =(N,,N,,N,)
# K, k, ky k, N N N.
1 0 0 0 2 3 0 1
2 0 0 2 0 3 0 1
3 0 2 0 0 3 0 1
4 2 0 0 0 3 0 1
5 1 1 1 0 1 3 0
6 1 1 0 1 1 3 0
7 1 0 1 1 1 3 0
8 0 1 1 1 1 3 0

+ Eight states are possible, with two distinct distributions
» The fundamental assumption says that all eight are equally likely

@ Applied Statistical Thermodynamics
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Larger values of N

Let’s increase the number of particles, but keep the energy at 3¢
For N =5 we have:

— 5 possibilities to get :(4, ) Egi%hn;?i/(i)c:]ugl
— 10 possibilities to get ', =(2,3,0) equally likely

For large N, the number of possibilities for .\ =(N —1,0,1)
is much smaller than for \/ =(N - 3,3,0)

For large N, a single distribution becomes dominant: A/

0.8 /
oy -\
) P(N)>P(N)
0 _ : - N, =(N-1,0,1)

a
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The possibilities of distributing

We need to calculate the number of possibilities to get a given
distribution

If I have N objects, 1, 2, 3, ... N, | can list them in N! ways

- N=3:(123)/(132)/(213)/(231)/(312)/(321)

— First pick one (N possibilities), pick the next (N-1 possibilities),
etc. until | have to pick the last one (1 possibility)

— N(N-1)(N-2)...1 = N!

If I have N objects and | want to distribute them in 2 groups

— N=3,M=1:(1123)/(2]13)/(3]|12)

— Wedontwanttocount (1[32)/(2]|31)/(3|21) separately
— Total number of possibilities is 3!/ (1! 2!) = 6/(1*2) = 3

— In general, dividing N objects in two classes with M and N-M

W:( N jL
M MI\(N - M)!
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Number of possibilities

Generalizing

W:( N jL
M M\(N—M)!

from two states to an infinite amount of states, we get
N!

oo

v
k

This will be a big number, so we write

W(\)=

InW(\)=InN-In[]V !=InN- Y Inv, !
k k

and now remember Sterlings rule for big N:

InN!=NInN—-N

and as /V, is also big
InN =N, InN =N,
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Number of possibilities

So, then we can write

InW(\)=InN== Y InN,!
k
=NInN-N-=Y N, InN, +> N,
k k
=NInN-Y N, InN,
k

= —2 N, (ln N,=In N) Redistribution of particles over
k the states at constant NVE is a
spontaneous process, for

= _Nzﬂ(lnﬂj which Entropy increases
T N N

oo Entropy is proportional to N
= _NZ P(k| A/’)lnP(k I\ (extensive variable)
k




Boltzmann’s suggestion
* Boltzmann postulates that the statistical entropy is
S(N)=k,InW(\)
* In the thermodynamic limit N — oo
— The statistical entropy becomes the thermodynamic entropy
SWU,V,N)=k,InW(\ )= —NkBZP(k)lnP(k)
k

— Similarly, the thermodynamic energy is approached by the
total energy of the particles
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U=E=)Y NE,
k

I Boltzmann
g * You can visit him at
§. Zentralfriedhof in Vienna
° SOV =k, InW ()
£
L
£
= * As we did during a workshop
™

on Entropy in May 2014

n
-

LVDWIG
BOLTZMANN
1844 1906




Ensembles

* By now, we have implicitly defined the microcanonical ensemble
» At constant N,V,E, all configurations have the same probability

+ If we have a system of N particles, it is completely defined by
the positions g and momenta p of the individual particles

* We can calculate their energy through the Hamiltonian H(g™,p™)

... infinite number
of microstates
H(q3N 3N H(qSN 3N H(q3N 3N

) Applied Statistical Thermodynamics

i 1/W(E,V,N) if E<XH(q,p)<E+A
/CKU\ PNVE (qap) = .
\ 0 otherwise

Microcanonical ensemble

* Transform from a discrete enumeration to continuous variables

* The number of possible configurations is called the density of
states or the partition function

W(E,V,N)=Q(E,V N)——hwﬁdqdp

h is the quantum mechanical volume of a microstate in phase
space (has unit of mass-length?/time)

+ The factor N! comes from the indistinguishability of the particles
* The normalization holds

v h3N - [[Po.wdadp=1

* and we can calculate the expectation value (average) of any

) Applied Statistical Thermodynamics

N\ quantity A
Qv (4) = [[ Po.wA®.@dadp
11 NVE N' h3N




Let’s go back to a discrete example

* A system of N molecules
» Every molecule can be in one of three energy states
- E;=0 E =¢ E,=2¢
— N, denotes the numbers in state k
N,+N,+N,=N
Ne+2N,e=U
* From this, we can write

U-Neg U-Nege

N

N, +N,+
2¢e 2e

N, =
(—l)leN—N(,—E = Nl=2N—2N(,—g
2 2€ E
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U-2N,e U-2N,e By applying the constraints
N] - € N(, + € + N2 =N of constant N and U, we can
U U write NV, and /., as function
(2+1)N,=N-N,-= = N, =N, -N+—  Offi,NandU
- E - E

Another example

The distribution is then
,/\/':(N(,,NI,Nz)
=(N,,2N=2N,-U/e,N,—N+U/¢)

And we can also write

|
Wy=— L
N, IN,IN, !
' N
S=k,InW(\)=k,In
NJJ@N=2N,=U/e)(N,—N+U/é€)!

this is something we can even calculate in Excel (for N = 50)

@ Applied Statistical Thermodynamics
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400

300

Shkq

100 -

0

200

Another example

"

—— N=200 U/e=150

—— N=300 U/e=150

—— N=300 U/e=300
®N=300 U/e=0

0 100

200 300 400
N

For N =300 and U =0, thoere is only one point, because there is only
one possible distribution: A" =(300,0,0) and S=0

For N = 300 and U/e = 300, maximum entropy for .\~ =(100,100,100)
For N =300 and U/ = 150, max S at /V, = 180; P(0) = 180/300 = 0.6
For N =200 and U/ = 150, max S at /V, = 80; P(0) = 80/200 = 0.4

— More particles, same energy: more have to be in the ground state

@ Applied Statistical Thermodynamics

Determine the most likely distribution

We want to find the distribution that maximizes

InW(\)==Y N, e
p N

Under the conditions that N and E are constant

N=iN,\ E=iN,\Ek
k k

Formulate the constraints as Lagrange multipliers

N-Y N, =0

k

E—iNAEkzo
k

And define an alternative function to maximize
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Determine the most likely distribution

We want to maximize the function

DN )= an(N')—(x(N— iN,\ )+ﬁ(E—iNAEkJ
:—iN,\ ln%—a(N—iNA]+ﬁ(E—iNAEkJ

The derivative with respect to any /V, gives

) _ N N L e
N, N N, N

and from that we derive
N
an‘: —1+o0-PBE,

P(k)=e" e Pt = 07 e P

So the probability of a state k is proportional to exp(-BE,)

@ Applied Statistical Thermodynamics

What is Q?

The normalization constant Q is readily determined

N=)YN,

k

so that means that

S p = SV N
;P(k)—gN—N 1

and thus

iP(k) = iQ’le’ﬁEk =1

= iZ‘e_ﬁE" =1
k
= Q is the partition function of the
0= Ze_ﬁEk canonical ensemble. We will
k see it come back often
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and what is 8?

* That is not so straightforward. We start from the characteristic
equation for the total energy

N
dU =—PdV + wdn, +TdS

i=1

* and we look at the temperature

)
aS Jyy

* Using a chain rule towards B

() (2,2, /3,
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towards

+ The thermodynamic energy U, is the expectation value <E>

=Y N.E =N P(k)E,
k k

* which gives

» and for the entropy we had
S(U,V,N)= —NkBZP(k)ln P(k)
aS dP(k)
— | ==Nk, ¥ (InP(k)+1
(aﬁ ]N,v 2 T ap
* Because Zp(k)zl 33’;3’0 =0

oS aP(k)
— =—Nk InP(k
(aﬁ)w 2 ©3p




Applied Statistical Thermodynamics

&=/

towards 3
« We use P(k)=0"e " for the first P(k)

o _-BE
e L

aﬁ NV k Q aﬁ
oP(k)
= —Nk E,—1In
Z (-BE~n0) 7= >Za§_;3k): .
= N Bk, ZE an‘)

« Coming back to the temperature, we get

3. /G8),

NS E aP(k) B S E, apgc)
1

:BkB [3 =
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Summary

* For a system of N particles and a constant energy E:
— There are many different configurations possible
— Every configuration has the same probability
— Various configurations lead to the same distribution
— The system will adopt the most likely distribution

— The most likely distribution corresponds to the highest
entropy, S

— Maximize the number of possibilities to get a certain
distribution, under the condition that N and E are constant

— Leads to Boltzmann distribution, with the probability for any
particle to be in state k: P(k)=0'e "

— Q@ is the partition function
— B=1/kgT




Summary

Any microstate with constant N, V, E has equal probability
Boltzmann linked the statistical entropy to

— the number of different states

— the number of microstates

— the phase space integral

From the microcanonical ensemble (NVE) we can derive all
other ensembles:

— Canonical ensemble (NVT)
— Isothermal-isobaric ensemble (N™T)
— Grand-Canonical ensemble (LVT)

@ Applied Statistical Thermodynamics
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Some maths — Stirlings approximation

*  We will often need N\! for very large N

 Consider N as a continuous variable and N! as a continuous
function of N that can be differentiated with respect to V

InN!=In[N(N -1)(N =2)...-1]

N N N
= lnHk = ZInk ~ Jlnxdx

/(V’ k=1 1
| use: In(ab)=Ina +In b |

| replace sum by integral

Applied Statistical Thermodynamics

= [xlnx — x]iv
] =NInN-N+1
KU for large N, we can
@) ~ NlIlN _ N neglect 1

Some maths — Lagrange multipliers

* We need to minimize or maximize a function f(x,,x,,...,Xx,): solve
d |
df — f dxl f d + + _fd.x =0 change dfin f

should be zero
| 0.x, ox,
+ If we want to find the solution, under specific conditions, we can
formulate a constraint in the form g(x,,x,,...,x,) =0

Then the easy solution to df = 0 by setting all df/dx=0 does not
work, because g(x,x,,...,X,) makes that the dx; are dependent:

g g g .
dg = o —=dx, +ade2+...+ o —dx, =0 'ngsmcgggg‘fte

* Instead, we solve this equation

of Jdf . dg Jdf . dg
+2128 g $A28 a4 2 -0
[ax axl) +[8x ox )X” +[8x T ) g

I’l I’l

) Applied Statistical Thermodynamics

* Now, the dx; are independent: set the terms in () to zero and
solve for the Lagrange multiplier A




Some maths — Lagrange multipliers

Example

Find the stationary points of the function f(x,))=4x?+ 3x + 2)2+ 6y
under the constraint g(x,y) =y -4x-2=0

a—f=8x+3 a—f=4y+6

ox 0y
0x dy

df af
(ax—i_/lax) [8\7—'_2‘8»} =0

(8x+3+A(—4))dx+(4y+6+21)dy =

Gives a set of three equations with three unknowns:

@ Applied Statistical Thermodynamics

8x—3-41=0 X ="
4y+6+1=0 (= y=-2,
v=4x-2=0 (A=8%)

Backup slides

LINK TO THERMODYNAMICS
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Link to thermodynamics

» Let’s consider two systems at constant N and V that can
exchange heat.

* Together they form a closed and isolated system

+ System 1: N,,V, fixed; E, variable
« System 2: N,,V, fixed; E, variable
* Two systems together E = E, + E, is constant

* what are the most probable value of E, and E, in the systems
 write these optimal values as E,"and E, =E - E,’

Applied Statistical Thermodynamics
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Link to thermodynamics

» Solution is very similar to the individual particles earlier

* The probability that we have E, for system 1 (and also E, for
system 2) is proportional to the number of possibilities

P(E))o<Q (E)Q,(E,)=Q(E)Q,(E-E))

*  The maximum of this is

) 90, (E 9Q,(E-E
B—EQI(EIMAE—E]):(.;—;1)92<E—E1)+91(E1>%-—1=0
90, (E,) 9Q,(E—E,)
Q,(E—E)=Q,E)Z2 ")
S B E)=0,(B)
L 9QE)  _ 1 00 E-E)
Q(E) OF |, Q(E-E) 0E | _,.
0 ) 0
a_E'llngl(El)zﬁlngz(E_El)
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Link to thermodynamics

We already had that
SWU,V,N)=k,InW(N )
S,(U,V,N)=k,InQ,(E,)

which means that the last line from the previous slide becomes

J .0 .
a_ElanI(El ): a_EzanZ(E_El )
iaSl(El*) _ iaS2(E_El*)

k, OE, k, OE,

And because T = (B_Uj
S Jyy

This will be an important
finding when we

1 1 introduce the canonical

=T, =T, NVT ensemble

we get

kBTVI kB T2

So the two systems will be in thermal equilibrium

Applied Statistical Thermodynamics
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And mechanical equilibrium

Let’s consider two systems at constant N that can exchange
heat and mechanical volume

Together they form a closed and isolated system

System 1: N, fixed; E,, V, variable
System 2: N, fixed; E,, V, variable
Two systems together E=E, + E, and V =V, + V, are constant

what are the most probable values of E, and E, and of VV, and
V, in the systems?

write these optimal values as




Setting

—P(E;,V)=0
OE, (E.V)

leads to

Changing E and V

Solution is very similar to the previous case

The probability that we have E,, V, for system 1 (and also E,,V,
for system 2) is proportional to the number of possibilities

P(El’v1)°<: Q](EpV])Qz(EQ,Vz):Q](EpV])Qz(E_E]’V_V])

1 0S,(E/.V) _ 1 9S,(E-E,V=V)

T, =T,
Next step, also set

J
—P(E,,V,)=0
T (E,V))
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k, OE &k, JE,

& The volume derivatives
% + So
c
2 0
-g a_VQI(El’VI)QZ(E_El’V_VI):
E 1
x 0Q,(E,,V)) 0Q,(E-E,,V-V,)
— L PQ (E-E,V-V)+Q(E,.V, —1=0
g aV] 2( 1 1) 1( 1 1) aV2
=
‘_fg » which we reshuffle to
2
) 0Q,(E,,V,) 0Q,(E-E,,V-V,)
= — L UQ(E-E,V-V)=Q(E,V,
E aVl 2( 1 l) 1( 1 1) 8V2
: 1 V)| 1 IQ,(E~E,,V -V,
.q_) Ql (El ’Vl) aVl |V1=V1* QZ (E - El ’V - Vl) aVZ |vl=vl*
_& QB )= = I, (E—E,.V -V,
< avl 1 1°71 8V2 2 1° 1
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Mechanical equilibrium

Putting in the entropy definition

S,(U,V,N)=k,InQ,(E,)
gives
i1nQ (E v*)=ilng (E-E,,V=V))
avl 1 171 avz 2 1° 1
L aSl (El ’Vl) _ L aSZ(E_El’V_‘/I*)
ky, oV, kg v,

And because

oU oU P (9S
T=|=—= P=| == o
%), =&, &)

This will be an important

we get finding when we
PP L p_p introduce the isothermal
kT kT, 1 1 isobaric NPT ensemble

So the systems will be in thermal and mechanical equilibrium




