
A
pp

lie
d 

St
at

is
ti

ca
l T

he
rm

od
yn

am
ic

s 

Ensembles I 
Counting microstates 

Chris Oostenbrink 
Institute of molecular modeling and simulation 
University of Natural Resources and Life Sciences 

A
pp

lie
d 

St
at

is
ti

ca
l T

he
rm

od
yn

am
ic

s Schedule 
International Spring School Statistical Thermodynamics 2017
Time Mon. Tue. Wed. Thur. Fri. Mon. Tue. Wed. Thur. Fri.

9:00 Free Time Welcome Free Time Free Time Free Time Free Time Free Time Free Time Free Time Free Time

9:30 Lecture 1: Lecture 4: Lecture 7: Lecture 10: Lecture 13: Lecture 16: Lecture 19: Lecture 22: Lecture 24:

Overview and
Introduction

JAG JAG JAG

JAG JAG

JAG JAG

JAG

Ensembles I
Calculating

properties from
simulations

Multi -resolution
simulations

On the ethics of
the academic 
endeavour:

where do we go?

Left-overs/
questions and

future
perspectives

10:15 Break Break Break Break Break Break Break Break
10:30 Lecture 2: Lecture 5: Lecture 8: Lecture 11: Lecture 14: Lecture 17: Lecture 20: Lecture 25:

Classical
Mechanics II

Ensembles II

Structure
Refinement QM/MM

11:15 CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak
11:45 Lecture 3: Lecture 6: Lecture 9: Lecture 12: Lecture 15: Lecture 18: Lecture 21: Lecture 23: Lecture 26:

Force-Field
Development

Electrostatics

Searching &
Enhanced
Sampling

Students plans II

12:30
Break for lunch,

self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Break for lunch,
self-study,
discussion.*

Tutorial 10: **

14:00 Registration Tutorial 2: Tutorial 3: Tutorial 4: Tutorial 5: Tutorial 6: Tutorial 7 Tutorial 8: Tutorial 9:

How to prepare a
barbecueTutorial 1

Statistical
Mechanics
exercisesLinux, NLHPC

and OS-dongle
installation

16:00 CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak CoffeeBreak
17:30 End of session End of session End of session End of session End of session End of session End of session End of session End of session

20:30 Free time Free time Free time Free time Beer, Science&
Friendship Free time Free time Free time Free time Farewell

Good Stock Bar

CO

CO

Thermodynamics Classical
Mechanics I

CO

CO

20/11/17 21/11/17 22/11/17 23/11/17 24/11/17 27/11/17 28/11/17 29/11/17 30/11/17 01/12/17

How to simulate
using GROMOS

Analizing with 
GROMOS

CO

CO

Boundary 
Conditions I

Boundary
Conditions II

CO

Free energies:
alchemistry

Free energies:
reaction

coordinates

WvG

WvG

Comparison with
Experiments

WvG

WvG

Polarization

WvG

WvG WvG

Students plans I

Running MD
GROMOS 
Tutorial

Running MD
Students Plans

WvG

WvG

Analizing MD:
Students Plans

Running MD
Students Plans

Running MD
Students Plans

Analizing MD:
GROMOS
Tutorial

Analizing MD:
Students Plans

CO: Chris Oostenbrink,  WvG: Wilfred van Gusteren, JAG: José Antonio Gárate
*Campus restaurant, Parque Tecnológico Zañartu
**Football field, Parque Tecnológico Zañartu
Lectures venue: Central Auditorium, 4th floor, Fundación Ciencia & Vida

Molecular 
Simulations
MD/SD/MC

WvG
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s What is statistical mechanics about? 
•  Provide the link between macroscopic properties and the 

molecular (nanoscopic) particles. 

n, P, T q3N, p3N q3N, p3N q3N, p3N 

“Macroscopic” view 
(e.g. experiment) 

Description of a system in 
terms of measurable 

(macroscopic) 
thermodynamic quantities 

“Microscopic” view 
(e.g. molecular simulation) 
Description of a system in 

terms of atomic details 
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s Outline 
•  A game 

•  States and entropy 

•  Microcanonical ensemble 
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s Balls and buckets 
•  A game with N children sitting in a circle, Ng girls, Nb boys 
•  Teacher divides M balls at random over them 

1 

4 

2 M 

3 

5 
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s Balls and buckets 
•  The teacher picks a random kid 
•  If it has a ball, it has to give it to another random kid 

1 

4 

2 M 

3 

5 

This is repeated until 
the kids are bored 
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s Balls and buckets 
•  The average number of balls per kid is <B>=M/N 

•  The probability that any kid has 0, 1, 2, 3, … balls appears to be 

•  What is the average number of balls collected by the girls? 

P(B) = Ce−B /<B>

g = fgM =
Ng

N
M P(g) = C 'e−(g−<g>)

2 /2σ 2

Gaussian distribution Boltzmann distribution 
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s Balls and buckets 
•  What if the teacher was not fair initially? 

–  The ‘correct’ distributions will appear after enough steps 

•  Analogies: 
–  The number of balls remains constant (constant energy) 
–  No kid can have less than 0 balls (ground-state energy is 

minimum) 

•  If M approaches infinity, we reach the thermodynamic limit 
–  P(g) becomes very sharply peaked around <g> 

•  Two approaches to get P(B)  (ergodicity) 
–  Follow one kid for a long time: time average (MD) 
–  Monitor the averages over all kids: ensemble average (MC) 
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s Isolated systems 
•  No heat transfer, no work (mechanical or chemical): 

–  Constant number of particles, volume and energy: NVE 

•  At constant E, any individual particle can still have an energy Ek 

•  If Nk particles have energy Ek we can write that 

•  For the game, this was the total number of kids N and the total 
number of balls M. With Nk kids having k balls: 

E = NkEk
k
∑ N = Nk

k
∑

M = Nkk
k
∑ N = Nk

k
∑
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s Isolated systems 
•  The individual particles have an energy Ek 

•  They may exchange energy through collisions 
–  (passing the balls around) 

•  The distribution of positions and velocities does not depend on 
the kind of collisions 

•  Rather we make a fundamental assumption: 

–  All possible configurations of the system with the same 
overall energy are equally likely 
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s Let’s look at an example 
•  Individual particles have three energy levels: 

–  E0 = 0   E1 = ε    E2 = 3ε 
•  For N particles we can define the system state S 

–      (specify energy level for all particles) 
•  And we can write the system distribution 

–      (specify number of particles at every level) 

•  Example for N = 4 

 N = N0 ,N1,N2( )

 S = k1,k2 ,...,kN( )

E = NkEk
k
∑ N = Nk

k
∑

0 

ε 

3ε 

Energy levels for  
every particle 

1 2 3 4 

 S = 2,1,1,0( )

 N = 1,2,1( )
E = 1⋅3ε + 2 ⋅ε +1⋅0
= 5ε

Possible state of 
the system 
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s Enforce total energy 
•  If the total energy is forced to be 3ε list all possible states 

#  k1  k2  k3  k4  N0  N1  N2 

1  0  0  0  2  3  0  1 
2  0  0  2  0  3  0  1 
3  0  2  0  0  3  0  1 
4  2  0  0  0  3  0  1 
5  1  1  1  0  1  3  0 
6  1  1  0  1  1  3  0 
7  1  0  1  1  1  3  0 
8  0  1  1  1  1  3  0 
 
•  Eight states are possible, with two distinct distributions 
•  The fundamental assumption says that all eight are equally likely 

 

 N = N0 ,N1,N2( ) S = k1,k2 ,k3,k4( )
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s Larger values of N 
•  Let’s increase the number of particles, but keep the energy at 3ε 
•  For N = 5 we have: 

–  5 possibilities to get 
–  10 possibilities to get 

•  For large N, the number of possibilities for 
is much smaller than for   

•  For large N, a single distribution becomes dominant: 

 N1 = 4,0,1( )
 N2 = 2,3,0( )

 N1 = N −1,0,1( )
 N2 = N − 3,3,0( )

 P(N2 ) > P(N1)

 N
*

 P(N )

N 

 N1 = N −1,0,1( )

 N
* = N2 = N − 3,3,0( )

Every individual 
configuration is 
equally likely 
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s The possibilities of distributing 
•  We need to calculate the number of possibilities to get a given 

distribution 

•  If I have N objects, 1, 2, 3, … N, I can list them in N! ways 
–  N=3: (1 2 3) / (1 3 2) / (2 1 3) / (2 3 1) / (3 1 2) / (3 2 1) 
–  First pick one (N possibilities), pick the next (N-1 possibilities), 

etc. until I have to pick the last one (1 possibility) 
–  N(N-1)(N-2)…1 = N! 

•  If I have N objects and I want to distribute them in 2 groups 
–  N=3, M=1: (1 | 2 3) / (2 | 1 3) / (3 | 1 2) 
–  We don’t want to count (1 | 3 2) / (2 | 3 1) / (3 | 2 1)  separately 
–  Total number of possibilities is 3! / (1! 2!) = 6/(1*2) = 3 
–  In general, dividing N objects in two classes with M and N-M 

W = N
M

⎛
⎝⎜

⎞
⎠⎟
= N!
M !(N −M )!
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s Number of possibilities 
•  Generalizing 

•  from two states to an infinite amount of states, we get 

 
•  This will be a big number, so we write 

•  and now remember Sterlings rule for big N: 

•  and as Nk is also big 

W = N
M

⎛
⎝⎜

⎞
⎠⎟
= N!
M !(N −M )!

 

W (N ) = N!

Nk !
k

∞

∏

 
lnW (N ) = lnN!− ln Nk !

k

∞

∏ = lnN!− ln
k

∞

∑ Nk !

lnN!≈ N lnN − N

lnNk !≈ Nk lnNk − Nk
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s Number of possibilities 
•  So, then we can write 

 
 

lnW (N ) = lnN!− lnNk !
k

∞

∑

= N lnN − N − Nk lnNk
k

∞

∑ + Nk
k

∞

∑

= N lnN − Nk lnNk
k

∞

∑

= − Nk lnNk − lnN( )
k

∞

∑

= −N Nk

N
ln Nk

N
⎛
⎝⎜

⎞
⎠⎟k

∞

∑

= −N P(k |N )ln
k

∞

∑ P(k |N )

Redistribution of particles over 
the states at constant NVE is a 
spontaneous process, for 
which Entropy increases 
 
Entropy is proportional to N 
(extensive variable) 
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s Boltzmann’s suggestion 
•  Boltzmann postulates that the statistical entropy is 

•  In the thermodynamic limit  
–  The statistical entropy becomes the thermodynamic entropy 

–  Similarly, the thermodynamic energy is approached by the 
total energy of the particles 

 S(N ) = kB lnW (N )

 
S(U,V ,N ) = kB lnW (N

*) = −NkB P(k)lnP(k)
k
∑

N→∞

U = E = NkEk
k

∞

∑
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s Boltzmann 
•  You can visit him at 

Zentralfriedhof in Vienna 

 
•  As we did during a workshop 

on Entropy in May 2014 

 S(N ) = kB lnW (N )
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s Ensembles 
•  By now, we have implicitly defined the microcanonical ensemble 
•  At constant N,V,E, all configurations have the same probability 

•  If we have a system of N particles, it is completely defined by 
the positions q and momenta p of the individual particles 

•  We can calculate their energy through the Hamiltonian 

… infinite number  
 of microstates 

 H(q
3N ,p3N )  H(q

3N ,p3N )  H(q
3N ,p3N )

 H(q
3N ,p3N )

 
PNVE (q,p) =

1/W (E,V ,N ) if E ≤ H(q,p) ≤ E + Δ
0 otherwise

⎧
⎨
⎩
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s Microcanonical ensemble 
•  Transform from a discrete enumeration to continuous variables 
•  The number of possible configurations is called the density of 

states or the partition function 

•  h is the quantum mechanical volume of a microstate in phase 
space (has unit of mass.length2/time) 

•  The factor N! comes from the indistinguishability of the particles 
•  The normalization holds 

•  and we can calculate the expectation value (average) of any 
quantity A 

W (E,V ,N ) =Ω(E,V ,N ) = 1
N!

1
h3N

dqdp∫∫

1
N!

1
h3N

P(p,q)dqdp∫∫ = 1

A NVE =
1
N!

1
h3N

P(p,q)A(p,q)dqdp∫∫
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s Let’s go back to a discrete example 
•  A system of N molecules 
•  Every molecule can be in one of three energy states 

–  E0 = 0   E1 = ε    E2 = 2ε 
–  Nk denotes the numbers in state k 

 
•  From this, we can write 

N0 + N1 + N2 = N
N1ε + 2N2ε =U

N2 =
U − N1ε
2ε

N0 + N1 +
U − N1ε
2ε

= N

1− 1
2

⎛
⎝⎜

⎞
⎠⎟ N1 = N − N0 −

U
2ε

⇒ N1 = 2N − 2N0 −
U
ε

N1 =
U − 2N2ε

ε
N0 +

U − 2N2ε
ε

+ N2 = N

−2 +1( )N2 = N − N0 −
U
ε

⇒ N2 = N0 − N +U
ε

By applying the constraints 
of constant N and U, we can 
write N1 and N2 as function 
of N0, N and U 
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s Another example 
•  The distribution is then 

•  And we can also write 

•  this is something we can even calculate in Excel (for N = 50) 

 

N = (N0 ,N1,N2 )
= (N0 ,2N − 2N0 −U / ε ,N0 − N +U / ε )

 

W (N ) = N!
N0 !N1!N2 !

S = kB lnW (N ) = kB ln
N!

N0 !(2N − 2N0 −U / ε )!(N0 − N +U / ε )!
⎡

⎣
⎢

⎤

⎦
⎥



A
pp

lie
d 

St
at

is
ti

ca
l T

he
rm

od
yn

am
ic

s Another example 

•  For N = 300 and U = 0, there is only one point, because there is only 
one possible distribution:                        and S = 0 

•   For N = 300 and U/ε = 300, maximum entropy for 
•   For N = 300 and U/ε = 150, max S at N0 = 180; P(0) = 180/300 = 0.6 
•   For N = 200 and U/ε = 150, max S at N0 = 80; P(0) = 80/200 = 0.4 

–  More particles, same energy: more have to be in the ground state 

 N = 300,0,0( )
 N

* = 100,100,100( )
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s Determine the most likely distribution 
•  We want to find the distribution that maximizes 

•  Under the conditions that N and E are constant 

•  Formulate the constraints as Lagrange multipliers 

•  And define an alternative function to maximize 

 
lnW (N ) = − Nk ln

Nk

Nk

∞

∑

N = Nk
k

∞

∑ E = NkEk
k

∞

∑

N − Nk
k

∞

∑ = 0 E − NkEk
k

∞

∑ = 0
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s Determine the most likely distribution 
•  We want to maximize the function 

•  The derivative with respect to any Nk gives 

•  and from that we derive 

•  So the probability of a state k is proportional to exp(-βEk) 

 

Φ(N ) = lnW (N )−α N − Nk
k

∞

∑⎛
⎝⎜

⎞
⎠⎟
+ β E − NkEk

k

∞

∑⎛
⎝⎜

⎞
⎠⎟

= − Nk ln
Nk

Nk

∞

∑ −α N − Nk
k

∞

∑⎛
⎝⎜

⎞
⎠⎟
+ β E − NkEk

k

∞

∑⎛
⎝⎜

⎞
⎠⎟

 

∂Φ(N )
∂Nk

= − ln Nk

N
− Nk

N
Nk

1
N

+α − βEk = 0

ln Nk

N
= −1+α − βEk

P(k) = eα−1e−βEk =Q−1e−βEk
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s What is Q? 
•  The normalization constant Q is readily determined 

•  so that means that 

•  and thus 

N = Nk
k

∞

∑

P(k)
k

∞

∑ = Nk

N
=

k

∞

∑ N
N

= 1

P(k)
k

∞

∑ = Q−1e−βEk
k

∞

∑ = 1

= 1
Q

e−βEk
k

∞

∑ = 1

Q = e−βEk
k

∞

∑
Q is the partition function of the 

canonical ensemble. We will 
see it come back often 
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s and what is β? 
•  That is not so straightforward. We start from the characteristic 

equation for the total energy  

•  and we look at the temperature 

•  Using a chain rule towards β 

dU = −PdV + µidni +TdS
i=1

N

∑

T = ∂U
∂S

⎛
⎝⎜

⎞
⎠⎟ N ,V

T = ∂U
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V

∂β
∂S

⎛
⎝⎜

⎞
⎠⎟ N ,V

= ∂U
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V

∂S
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V
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s towards β  
•  The thermodynamic energy U, is the expectation value <E> 

 
•  which gives 

•  and for the entropy we had 

•  Because  

∂S
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V

= −NkB lnP(k)+1( ) ∂P(k)
∂βk

∞

∑

U = E = NkEk
k

∞

∑ = N P(k)Ek
k

∞

∑

∂U
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V

= N Ek
∂P(k)
∂βk

∞

∑

S(U,V ,N ) = −NkB P(k)lnP(k)
k
∑

∂S
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V

= −NkB lnP(k) ∂P(k)
∂βk

∞

∑

P(k)∑ = 1 ∂P(k )
∂β = 0∑
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s towards β  
•  We use                         for the first P(k) 

 

•  Coming back to the temperature, we get 

∂S
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V

= −NkB ln e
−βEk

Q
∂P(k)
∂βk

∞

∑

= −NkB −βEk − lnQ( ) ∂P(k)
∂βk

∞

∑

= NβkB Ek
∂P(k)
∂βk

∞

∑

P(k) =Q−1e−βEk

∂P(k )
∂β = 0∑

T = ∂U
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V

∂S
∂β

⎛
⎝⎜

⎞
⎠⎟ N ,V

= N Ek
∂P(k)
∂βk

∞

∑ NβkB Ek
∂P(k)
∂βk

∞

∑

= 1
βkB β = 1

kBT
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s Summary 
•  For a system of N particles and a constant energy E: 

–  There are many different configurations possible 
–  Every configuration has the same probability 
–  Various configurations lead to the same distribution 
–  The system will adopt the most likely distribution 
–  The most likely distribution corresponds to the highest 

entropy, S 

–  Maximize the number of possibilities to get a certain 
distribution, under the condition that N and E are constant 

–  Leads to Boltzmann distribution, with the probability for any 
particle to be in state k:  

–  Q is the partition function 
–  β = 1/kBT  

 

P(k) =Q−1e−βEk
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s Summary 
•  Any microstate with constant N, V, E has equal probability 
•  Boltzmann linked the statistical entropy to  

–  the number of different states 
–  the number of microstates 
–  the phase space integral 

•  From the microcanonical ensemble (NVE) we can derive all 
other ensembles: 

–  Canonical ensemble   (NVT) 
–  Isothermal-isobaric ensemble  (NPT) 
–  Grand-Canonical ensemble  (µVT) 
–  … 
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s 

MATHEMATICAL 
BACKGROUND 

Backup slides 



A
pp

lie
d 

St
at

is
ti

ca
l T

he
rm

od
yn

am
ic

s Some maths – Stirlings approximation 
•  We will often need N! for very large N 

•  Consider N as a continuous variable and N! as a continuous 
function of N that can be differentiated with respect to N 

lnN!= ln[N (N −1)(N − 2)...⋅1]

= ln k
k=1

N

∏ = ln k
k=1

N

∑ ≈ ln xdx
1

N

∫

= x ln x − x[ ]1
N

= N lnN − N +1
≈ N lnN − N

use: ln(ab)=ln a + ln b 

replace sum by integral 

for large N, we can 
neglect 1 
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s Some maths – Lagrange multipliers 
•  We need to minimize or maximize a function f(x1,x2,…,xn): solve  

 
•  If we want to find the solution, under specific conditions, we can 

formulate a constraint in the form g(x1,x2,…,xn) = 0 
•  Then the easy solution to df = 0 by setting all ∂f/∂x=0 does not 

work, because g(x1,x2,…,xn) makes that the dxi are dependent: 

•  Instead, we solve this equation 

•  Now, the dxi are independent: set the terms in () to zero and 
solve for the Lagrange multiplier λ 

df = ∂ f
∂x1

dx1 +
∂ f
∂x2

dx2 + ...+
∂ f
∂xn

dxn = 0
change df in f 
should be zero 

dg = ∂g
∂x1

dx1 +
∂g
∂x2

dx2 + ...+
∂g
∂xn

dxn = 0 is zero because 
 g is constant 

∂ f
∂x1

+ λ ∂g
∂x1

⎛
⎝⎜

⎞
⎠⎟
dx1 +

∂ f
∂xn

+ λ ∂g
∂xn

⎛
⎝⎜

⎞
⎠⎟
dx2 + ...+

∂ f
∂xn

+ λ ∂g
∂xn

⎛
⎝⎜

⎞
⎠⎟
dxn = 0
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s Some maths – Lagrange multipliers 
•  Example 
•  Find the stationary points of the function f(x,y)=4x2 + 3x + 2y2 + 6y 

under the constraint g(x,y) = y - 4x - 2 = 0 

•  Gives a set of three equations with three unknowns: 

∂ f
∂x

= 8x + 3

∂g
∂x

= −4

∂ f
∂x

+ λ ∂g
∂x

⎛
⎝⎜

⎞
⎠⎟ dx +

∂ f
∂y

+ λ ∂g
∂y

⎛
⎝⎜

⎞
⎠⎟
dy = 0

8x + 3+ λ(−4)( )dx + 4y + 6 + λ( )dy = 0

∂ f
∂y

= 4y + 6

∂g
∂y

= 1

8x − 3− 4λ = 0
4y + 6 + λ = 0
y − 4x − 2 = 0

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
⇒

x = −59
72

y = −23
18

(λ = 8
9)
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LINK TO THERMODYNAMICS 
Backup slides 
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•  Let’s consider two systems at constant N and V that can 

exchange heat.  
•  Together they form a closed and isolated system 

•  System 1: N1,V1 fixed; E1 variable 
•  System 2: N2,V2 fixed; E2 variable 
•  Two systems together E = E1 + E2 is constant 

•  what are the most probable value of E1 and E2 in the systems 
•  write these optimal values as E1

* and E2
* = E – E1

*  

N1, V1  
fixed 

N2, V2  
fixed E 
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s Link to thermodynamics 
•  Solution is very similar to the individual particles earlier 
•  The probability that we have E1 for system 1 (and also E2 for 

system 2) is proportional to the number of possibilities 

•  The maximum of this is  

P(E1)∝Ω1(E1)Ω2 (E2 ) =Ω1(E1)Ω2 (E − E1)

∂
∂E1

Ω1(E1)Ω2 (E − E1) =
∂Ω1(E1)
∂E1

Ω2 (E − E1)+Ω1(E1)
∂Ω2 (E − E1)

∂E2
⋅−1= 0

∂Ω1(E1)
∂E1

Ω2 (E − E1) =Ω1(E1)
∂Ω2 (E − E1)

∂E2
1

Ω1(E1
*)
∂Ω1(E1)
∂E1 E1=E1

*

= 1
Ω2 (E − E1

*)
∂Ω2 (E − E1)

∂E2 E1=E1
*

∂
∂E1

lnΩ1(E1
*) = ∂

∂E2
lnΩ2 (E − E1

*)
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s Link to thermodynamics 
•  We already had that 

•  which means that the last line from the previous slide becomes 

•  And because 

•  we get 

•  So the two systems will be in thermal equilibrium 

 

S(U,V ,N ) = kB lnW (N
*)

S1(U,V ,N ) = kB lnΩ1(E1
*)

∂
∂E1

lnΩ1(E1
*) = ∂

∂E2
lnΩ2 (E − E1

*)

1
kB

∂S1(E1
*)

∂E1
= 1
kB

∂S2 (E − E1
*)

∂E2

T = ∂U
∂S

⎛
⎝⎜

⎞
⎠⎟ N ,V

1
kBT1

= 1
kBT2

⇒T1 = T2

This will be an important 
finding when we 

introduce the canonical 
NVT ensemble 
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s And mechanical equilibrium 
•  Let’s consider two systems at constant N that can exchange 

heat and mechanical volume  
•  Together they form a closed and isolated system 

•  System 1: N1 fixed; E1, V1 variable 
•  System 2: N2 fixed; E2, V2 variable 
•  Two systems together E = E1 + E2 and V = V1 + V2 are constant 

•  what are the most probable values of E1 and E2 and of V1 and 
V2 in the systems? 

•  write these optimal values as  
E1

* and E2
* = E – E1

*    V1
* and V2

* = V – V1
*  

N1  
fixed 

N2  
fixed E, V 
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•  Solution is very similar to the previous case 
•  The probability that we have E1, V1 for system 1 (and also E2,V2 

for system 2) is proportional to the number of possibilities 

•  Setting  

•  leads to 

•  Next step, also set  

P(E1,V1)∝Ω1(E1,V1)Ω2 (E2 ,V2 ) =Ω1(E1,V1)Ω2 (E − E1,V −V1)

∂
∂E1

P(E1
*,V1) = 0

1
kB

∂S1(E1
*,V1)

∂E1
= 1
kB

∂S2 (E − E1
*,V −V1)

∂E2
T1 = T2

∂
∂V1

P(E1,V1
*) = 0
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s The volume derivatives 
•  So 

•  which we reshuffle to 

∂
∂V1

Ω1(E1,V1)Ω2 (E − E1,V −V1) =

∂Ω1(E1,V1)
∂V1

Ω2 (E − E1,V −V1)+Ω1(E1,V1)
∂Ω2 (E − E1,V −V1)

∂V2
⋅−1= 0

∂Ω1(E1,V1)
∂V1

Ω2 (E − E1,V −V1) =Ω1(E1,V1)
∂Ω2 (E − E1,V −V1)

∂V2
1

Ω1(E1,V1
*)
∂Ω1(E1,V1)

∂V1 V1=V1
*

= 1
Ω2 (E − E1,V −V1

*)
∂Ω2 (E − E1,V −V1)

∂V2 V1=V1
*

∂
∂V1

lnΩ1(E1,V1
*) = ∂

∂V2
lnΩ2 (E − E1,V −V1

*)
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s Mechanical equilibrium 
•  Putting in the entropy definition 
 
•  gives 

•  And because 

•  we get 

•  So the systems will be in thermal and mechanical equilibrium 

S1(U,V ,N ) = kB lnΩ1(E1
*)

∂
∂V1

lnΩ1(E1,V1
*) = ∂

∂V2
lnΩ2 (E − E1,V −V1

*)

1
kB

∂S1(E1,V1
*)

∂V1
= 1
kB

∂S2 (E − E1,V −V1
*)

∂V2

T = ∂U
∂S

⎛
⎝⎜

⎞
⎠⎟ N

P = ∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ N

P
T
= ∂S

∂V
⎛
⎝⎜

⎞
⎠⎟ N

P1
kBT1

= P2
kBT2

⇒ P1 = P1

This will be an important 
finding when we 

introduce the isothermal 
isobaric NPT ensemble 


