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1 Introduction

1.1 Theoretical Background [1]

In the lecture we derived the energy levels of a quantum ideal gas particle in a
box of length L :
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where h is Plancks constant and n; are three quantum numbers that define the
eigenstate of the particle. In a real ideal gas, particles exchange energy by col-
lisions. In our approximation, we do not take the precise motion and positions
of particles into account. Therefore, only energy conservation has to be consid-
ered. This is very similar to the previous Coupled Harmonic oscillators example.
However, given that the energy levels are not equidistant, during binary colli-
sion, the energy lost by a particle ¢ cannot always be exactly compensated by
the energy gain of particle j.

1. Show that when particle ¢ in state n = (2,2, 3) changes to n = (2,2,2),
the energy loss cannot be compensated by an energy gain of particle j
originally in state n = (1,1, 1).

1.2 Program

A method exists to deal with the previous problem, called the Maxwell demon
method[2, 3]. In brief, the demon behaves as an auxiliary particles that stores
or gives energy. In detail:

1. Set up an initial microstate with a desired total energy E and assign an
initial energy to the demon (normally zero).

2. Make a trial change in the microstate. In this case, randomly select a
particle and a dimension and randomly increase or decrease the energy by
one unit.

3. Compute the change in energy of the system, AFE. if AEF < 0, accept
the change and increase the energy of the demon by |AE|. If AE > 0,
accept the change, if the demon has enough energy to give to the system,
and reduce the demon’s energy by AE. The only constraint is that the
demon’s (and any particle) must remain greater or equal to a lower bound,
which we take to be zero.If a trail change is not accepted, the existing
microstate is counted in the averages. In either case the total energy F
plus the energy of the demon FE,; remains constant.

4. Repeat steps 2 and 3 many times.

For simplicity h?/8mL? is set to 1.



2 Instructions

2.1 Install

To compile and install the program run the following commands:

$ ¢d Tutorial_5/IdealGasEnergy
$ make

in the working directory you will find the compiled binary
$ IdealGas

2.2 Usage

$ vi IdealGas.arg

e @particles = Number or particles.
e Qcycles = The number of cycles.

e @QMaxEnergy = Maximum energy per dimension.

@equilibrium = set up the entropy calculation and the initial conditions.

@TotEnergy = Total energy of the system + demon.

The number of cycles is proportional to the number of times that an attempt
is made to transfer an energy package from one particle to the demon. A
larger number of cycles means more accurate results, but it also takes more
computer time. You will have to develop some sort of feeling for how many
cycles are needed to obtain results that are accurate enough, When you run the

program again using other values for the input parameters;the old output files
are overwritten.

To run the program:
$ \.IdealGas Qf IdealGas.arg > results.out

Two files will be generated :

$ energy_distribution.dat : Unnormalized histogram of the energy states of
the first particle.

$ et.dat : Energy and state trajectory of the first particle.

3 Exercises

1. From simulation output (et.dat), plot a histogram of P(E) as function of
energy.



2. From simulation output (energy_distribution.dat) plot a scatter plot of
Counts vs energy.

3. Explain the differences between both probability distributions.

4. Verify that P(E,) = =2CE)
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