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6.1
Introduction

The prediction of the folding of a protein into its native three-dimensional fold as
a function of the external conditions is one of the major computational challenges
in structural biology [1]. The folding process of polypeptides in solution is driven
by weak, nonbonded interatomic interactions. Such interactions govern the ther-
modynamic properties of the condensed phase in which the (un)folding occurs.
Simulation of folding is therefore most promisingly modeled at the atomic level.
Since the temperature (T) range of interest basically lies between room and phys-
iological temperatures and energies involved in (un)folding processes are on the
order of 1-10 kg T (tens of k] mol™!, kg is Boltzmann’s constant), the folding pro-
cess is largely determined by the laws of classical statistical mechanics. Although
quantum mechanics governs the interaction between the electrons of the atoms
and molecules, the nonbonded interactions can be very well described by a classi-
cal potential energy function or force field as part of a classical Hamiltonian of the
system of interest. The statistical-mechanical nature of the folding equilibrium of
a polypeptide complicates its modeling because the entropic contributions to the
free energy of (un)folding are sizeable. The state of a polypeptide in solution is
generally characterized not by one configuration or structure, but by a Boltzmann
ensemble of configurations or structures. Although it is easier to think of and
handle single structures than to consider configurational ensembles, a number
of (experimental) observations including those concerning folding equilbria can

only be understood by an analysis in terms of alternative structures or conforma- _

tions present in an ensemble and in terms of entropy. :

Although the protein folding problem has been extensively studied, both theo-
retically and experimentally, over many years using proteins as objects [2, 3], the
key to unraveling the basic principles of the folding process may lie in the study
of other polypeptides or peptoids that also adopt a variety of particular folds, and
not only carry different side chains but also vary in composition of the (polypep-
tide) backbone. A great variety of such foldamers exists [4, 5] (see Chapters 1-5).
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6 Simulation of Folding Equilibria

In this chapter we consider the theoretical modeling of the folding equilibria of
foldamers. To be more precise, we may distinguish three levels of description of
fold characteristics:

1. prediction of the most dominant structure or fold,

2. prediction of the folding equilibrium,

3. prediction of the folding pathways and kinetics,

for a variety of foldamers in solution as a function of the thermodynamic con-
ditions (temperature, pressure, pH, ionic strength), and of the composition of
the solvent. The first level of description does not consider the folding process,
only structure prediction. It does not yield (free) energy differences between
conformers, ignores the ensemble character of the condensed phase and folding
kinetics. Therefore, methods for structure prediction of foldamers will not be
considered here. The second level involves a description of the folding equilib-
rium in terms of a conformational ensemble and thermodynamics, ignoring
kinetics and dynamics, which are considered in addition at the third level of
description.

Validation of a simulation of a folding equilibrium is usually done by compari-
son of simulated and experimentally measured properties of the system. How-
ever, this sounds more straightforward than it actually is. First, almost every ex-
periment involves an averaging over time and space or molecules, and therefore,
does not yield direct information on all configurations constituting a simulation
trajectory. Second, experimental data for foldamers are scarce when compared
with the number of degrees of freedom involved, so the problem of deriving the
conformational ensemble of the folding equilibrium from experimental data has
not been studied extensively. Different ensembles may reproduce the same set of
experimental data. Third, the experimental data may be of insufficient accuracy to
be used to (in)validate simulation predictions. Data characterizing folding equilib-
ria of foldamers mainly originate from NMR experiments and involve nuclear
Overhauser enhancement (NOE) intensities and 3J-coupling constants.

On the theoretical side the situation is not less problematic. Folding equilibria
are characterized by small (free) energy differences, on the order of 1-10 kg T,
and a low frequency of (un)folding events compared with the time scale of tens
to hundreds of nanoseconds reachable for not too large polypeptides in solution
using current computers. This implies that converged equilibrium properties and
kinetic data can be obtained only for the smallest, rapidly folding foldamers. A
popular way to lengthen the time scale of a polypeptide simulation is to reduce
the number of explicitly treated degrees of freedom by omitting the solvent ones
and representing them by a mean field, a kind of continuum approximation [6-
8]. However, such a mean-field solvent represents only one solvent, generally
water, at a particular thermodynamic state point (temperature, pressure, pH,
etc). Since one of the goals of foldamer research is to characterize folding equilib-
ria and kinetics as function of variation of the environment (solvent, co-solvents)
and thermodynamic state points, we shall leave theoretical work based on mean-
field solvation models out of consideration.
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In the next sections we consider various aspects of dynamic simulation of fold-
ing equilibria and their kinetics. They will be illustrated with examples from our
own work. It is not the purpose of the present chapter to review the contributions
of various research groups to the field of theoretical modeling of foldamers, but to
offer the reader an impression of the current possibilities of simulating dynami-
cal folding equilibria of foldamers.

6.2

Dynamical Simulation of Folding Equilibria under Different Thermodynamic
and Kinetic Conditions

Until nine years ago, computer simulation could only be used to investigate the

stability of the folds of proteins or peptides by submitting them in their folded
form to strongly denaturing forces, e.g. at non-physiologically high temperatures
[9, 10]. Folding into the native structure starting from an arbitrary structure
under physiological conditions had not been observed at that time. In 1998 Daura

et al. [11, 12] demonstrated the reversible folding of a peptide in solution and

showed that the unfolded state was characterized by a limited number of peptide
conformations. During the following years other studies of reversible peptide
folding appeared [13-21]. It is now possible to investigate the folding equilibrium
as function of temperature [12, 22], of pressure [23], of pH [24], of ionic strength
[25, 26], and of solvent viscosity [27]. '

Figures 6.1 to 6.4 illustrate the effects of variation of the mentioned factors
upon the folding equilibrium and kinetics for two 7-B-peptides and a 20-B-peptide

in solution. The backbone atom-positional root-mean-square deviation (RMSD)

from the 3;4-helical folded structure is shown as function of time. The 314-helical
model structure (see Chapter 2) had been derived as most populated structure in
methanol solution from NMR experiments [28, 29]. The upper panel of Fig. 6.1
shows that the helical fold of the 7-g-peptide is very stable at 298 K, only two ma-
jor unfolding events are observed within 80 ns and the folded conformation is
present for about 97% of the time. At 340 K (second panel) the 7-8-peptide is
about 50% folded, in agreement with experimental data. The effect on the folding
kinetics at 340 K by a change of the solvent viscosity by 1 or & is seen in the third
and fourth panels. The folding equilibrium remains the same, but the folding
kinetics is much faster [27). Changing the pressure at 340 K from 1 atm to 1000
atm does shift the folding equilibrium towards the unfolded state, as is illustrated
in Fig. 6.2 [23]. Figure 6.3 shows that the population of the helical fold decreases
as the terminal groups change from (NH;*, COOH) in the upper panel, to (NH;,
COO7) in the middle panel, to (NH,, COOH) in the lower panel. The 3y4-helical
fold is more stable in the absence of protecting groups and is enhanced at acidic
conditions [24]. Figure 6.4 shows that the presence of Cl~ counterions stabilizes
the 34-helical fold of the 20-8-peptide carrying all 20 proteinogenic side chains
[26] by supporting side-chain salt-bridge formation. |
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Fig. 6.1 Backbone atom-positional root-
mean-square deviation (residues 2-6) of MD
trajectory structures with respect to the
helical model structures derived from NMR
data for B-heptapeptides of identical chain
lengths in methanol at 1 atm (the structures
are given in panel A and panel E) [57]. The

1
40 60 80

time [ns]

peptide with apolar side chains is simulated
at 298 K (A) and at 340 K (B-D). The
viscosity of the methanol solvent is reduced
by a factor 3 (C) and by factor 10 (D) through
mass scaling. The peptide with a few polar
side chains is simulated at 340 K in normal

methanol (E).
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Fig. 6.2 Backbone atom-positional root-mean-square deviation
(residues 2-6) of MD trajectory structures (340 K) with respect to the
314-helical model structure derived from NMR data for a p-heptapeptide

(see panel A of Fig. 6.1) in methanol at 1 atm (upper panel) and at
1000 atm (lower panel) [23].
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Fig. 6.3 (legend see p. 178)
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Fig. 6.4 Time series of the backbone atom- results for the simulations in water (53A6
positional root-mean-square distance force field) and the lower right panel the
(RMSD) (residues 2-19) of MD trajectory results for the simulations in methanol with
structures with respect to the ideal 314-helical ~ the 45A3 force field. Colors represent
structure for a 20-8*-peptide (sequence: Cys,  different temperatures and ionic strengths.
Ala, Ser, His, Asn, Glu, Gly, Trp, Arg, Val, Asp, = The magenta horizontal dashed line indicates
Gln, lle, Lys, Thr, Leu, Tyr, Met, Phe, Pro). the minimum RMSD value for which all NMR
The top panel shows the results for the model structures would belong to the same
simulations in the methanol with the 53A6 conformational cluster {0.12 nm) [26].

force field. The lower left panel shows the

6.3 .
Variation of the Composition of the Polypeptide Analogs and the Solvent

Other peptides than a- or f-peptides have been shown, both experimentally and
computationally, to fold into stable folds. The folding equilibria for furanose-
based carbopeptoids of different chain lengths have been simulated in agreement
with NMR experimental data [30, 31]. A simulation study of an a-peptidic equiva-
lent of the 7-f-peptide discussed before predicted that it would not adopt a helical

Fig. 6.3 Backbone atom-positional root- residues. Upper panel: the N terminus is
mean-square deviation (residues 2—-6) of MD  charged and the C terminus is uncharged
trajectory structures with respect to the 3y4- (NH3*, COOH); middle panel: the N

helical model structure derived from NMR terminus is uncharged and the C terminus is
data for a f-heptapeptide (see Panel A, Fig. charged (NH;, COO™); lower panel: both
6.1) in methanol for simulations with termini are uncharged (NH,, COOH) [24].

different charge states of the terminal
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Fig. 6.5 Backbone atom-positional root- - helical reference structure, whereas for all
mean-square deviation (residues 2-6) of MD  other peptides a canonical 3,4-helical
trajectory structures with respect to the 3,- conformation was taken as reference. The
helical conformation as a function of time for ~ pepOnone notation stands for the 7-p-
four f-depsiheptapeptides (see Fig. 6.6) at peptide the structure of which is shown in

298 K and 340 K. For peptide pepOnone the panel A of Fig. 6.1.
NMR model structure was used as the 3q4-

fold, neither in water nor in methanol, in agreement with NMR data [32]. A
very short 3-f-aminoxypeptide was shown to adopt a very stable 1.8g-helix in
chloroform and to exhibit no particular fold in water, again in agreement with
NMR data [33]. Figure 6.5 shows the effect of replacing an N~H group by an O
atom in residue 2 (pep O3), or residue 4 (pep O.), or residue 6 (pep Og), or all
residues (pep Oan) in 7--peptides (Fig. 6.6) that are very similar to the 7-8-peptide
(PePOnone) discussed before. The population of the 3,4-helical fold decreases from
PePOnone to pepO¢ to pepO; to pepO, to pepOy,y, in agreement with NMR data
[34]. Whether the N or C termini of a -peptide are carrying protective groups or
not, also influences the stability of the helical fold in agreement with experiment
[35].

Which particular fold (see Chapter 2) a g-peptide will adopt depends on the
type of side chain and whether the side chain is located at the a-position (B2-
peptide) or at the B-position (8°-peptide) in the backbone. The folds observed in
NMR experiments were all reproduced in MD simulations based on the GRO-
MOS force field: a left-handed (M)-314 helix [12], a right-handed (P)-10/12 helix
[13], a right-handed (P)-2.5;, helix [36], or a B-hairpin [18]. Substitution of
two methyls at the f-positions in conjunction with standard side chains at the
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Fig. 6.6 Sequences of the four §°-depsi- Hleu-g-HVal-g-HVal-g-HLeu-g-dHAla-g-HVal-
peptides and the §°-peptide considered in OH; p-depsipeptide pepOall: H-g-HVal-g-
Fig. 6.5. B-peptide pepOnone: H-g-HVal-g- dHAla-g-dHLeu-g-dHVal-g-dHAla-f-dHLeu-
HAla-g-HLeu-g-HAla (a-Met)-8-HVal-g-HAla-g-  f-dHVal-OH; The N-terminal amino- and
HLeu-OH. g-depsipeptide pepO2: H-B-HVal- C-terminal carboxylate groups are both
f-dHAla-g-HLeu--HVal-g-HAla-g-HLeu-g- protonated in the simulations as suggested

HVal-OH; g-depsipeptide pepO4: H-B-HAla-g- by the experimental data. The depsi-amino
Hleu-8-HVal-8-dHAla-g-HLeu-8-HVal-5-HAla- acids are denoted with dHAla, dHVal, dHLeu.
OH; S-depsipeptide pepO6: H-B-HAla-p-

a-position prevents helix formation [19], whereas substitution of hydroxyl groups
at the a-positions in conjunction with standard side chains at the B-positions
leads to the formation of a (P)2.5;; helix [36]. The influence of different stereo-
centers (SR versus SS) in the backbone of a Val-Phe f-peptide on its conforma-
tional preferences was found to be significant, both in simulation and in NMR
experiments [37]. Also for carbopeptoids the preserice of cis versus trans linkage
across the tetrahydrofuran ring influences the emergence of a particular fold
[30, 31]. Whether the presence of side chains with a branching point adjacent
to the f-carbon in the backbone (e.g. Ile or Val) [38] or the presence of polar or
charged side chains, which would be able to form salt bridges [25, 26], would en-
hance helix formation in g-peptides was also investigated.

Use of an explicit representation of solvent in the simulations offers the possi-
bility of investigating solvent effects upon fold formation. g-Peptides of different
chain lengths that adopt helical folds in methanol, show less to no tendency to do
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so when solvated in water [25, 26, 39]. Solvation in chloroform tends to enhance
helix formation [33, 40]. For o-peptides, f-hairpin formation in water has been ob-
served [16, 41]. In less polar solvents, such as DMSO, partial helix formation
could be observed for a particular 8-a-peptide [42]. Carbopeptoids also showed dif-
ferent folding behavior in DMSO versus chloroform [30, 31]. The observed effects
can be rationalized in terms of degree of solvent polarity or dielectric permittivity
and competitiveness to form solute—solvent hydrogen bonds. For an example of
the complex effects of the addition of co-solvent upon hydrophobic association
we refer to [43].

6.4
Convergence of the Simulated Folding Equilibrium

The convergence of a folding equilibrium can be monitored by calculating the
number of conformational clusters in a MD trajectory as function of time. A con-
formational cluster is defined as the set of solute trajectory structures that deviate
less than a given limit from each other. Figure 6.7 shows for example trajectory
structures of the 7-f-peptide for which the backbone atom-positional root-mean-
square deviation (RMSD) for residues 2—6 from the central member structure of
the cluster is less than 0.09 nm. The clustering RMSD criteria chosen, 0.09 nm in

Fig. 6.7 Superposition of the trajectory structures of a f-heptapeptide
(see Panel A, Fig. 6.1) at 360 K with RMSD (residues 2—6) from the
central structure of 0.09 nm, and a maximum RMSD between any two
structures of 0.16 nm [44]. \ '
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Fig. 6.8 Number of clusters (conformers) of a f-heptapeptide (see
Panel A, Fig. 6.1) at 340 K and at a pressure of T atm (m) and 1000 atm
(e) as a function of time. In the upper panel each point represents the
total number of clusters (conformers) at the corresponding time point
and in the lower panel the number of clusters (conformers) that make
up 95% of the trajectory sampled at the corresponding time point [23].

this case, will determine how precisely a particular cluster is defined. Because the
clustering algorithm [44] tends to produce many very sparsely populated clusters
after having found the most populated ones, the convergence of the (un)folding
equilibrium is better characterized by monitoring not the total number of clus-
ters, but the number of conformational clusters that make up e.g. 95% of the tra-
jectory sampled at the corresponding time point, see Fig. 6.8. This figure shows
that the conformational space of the 7-g- peptide is basically completely sampled
within about 30 ns. However, to obtain sufficient statistics on (un)folding events
much longer simulation times are required as is suggested by Fig. 6.2.

Figure 6.9 shows cases in which the number of sampled conformational clus-
ters does not level off with time, but displays a linear growth with time: the poly-
hydroxybutanoate solute continuously accesses new conformations, because there
are no hydrogen-bond donor moieties in this chain molecule [45]. Intrasolute
hydrogen bonding does not restrict the conformational space accessible to this
molecule.

Figure 6.10 demonstrates that for longer chain molecules even 100 ns of sam-
pling at 298 K is not sufficient to find the most dominant P-2.54; helical con-
former [36]. Only by simulating at higher temperature, 340 K, it was found, and
subsequent simulation starting from this helical structure confirmed its domi-
nance and stability also at 298 K. The lowest panel of Fig. 6.1 illustrates that the
presence of polar side chains may slow down the (un)folding process. The conver-
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Fig. 6.9 Number of clusters (conformers) of two f-depsihexapeptides
which differ in the side chain structure: (o) represents the p-
depsihexapeptide with all alanine residues and () represents the §-
depsihexapeptide with alanine, valine and leucine side chains at 298 K
and 1 atm as a function of time [45].
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Fig. 6.10 Backbone atom-positional root-mean-square deviation of MD
trajectory structures with respect to a 2.51,-helical model structure
(residues 2-7) derived from NMR data for a f-octapeptide in methanol
at 298 K (upper panel) and 340 K (lower panel) simulated from
different starting structures. Blue and red curves: an extended peptide
structure; green curve: a 2.5¢;-helical structure [36].

183



rmsd [nm]

184

6 Simulation of Folding Equilibria

gence of folding equilibria of a-peptides in water is very much slower than that of
B-peptides in methanol [46].

6.5
Sensitivity of the Folding Equilibrium to the Force Field Used

Most of the simulation studies of the folding equilibria of peptoids under various
thermodynamic and environmental conditions made use of the GROMOS force
field [47, 48], parameter sets 43A1 [49] or 45A3 [50]. These parameter sets con-
tain nonbonded interaction parameters for nonpolar atoms which were optimized
to reproduce thermodynamic properties (heat of vaporization, density, free energy
of solvation) for liquid hydrocarbons and their aqueous solutions [49, 50]. Be-
cause of this thermodynamic basis, the various predominant folds of the different
B-peptides with predominantly nonpolar side chains could be found in the MD
trajectories in agreement with NMR experimental data [11-13, 16-19}. There
seem to be no comparable studies based on other biomolecular force felds that
show nearly as good agreement with the experimental data as is obtained using
the GROMOS force field [51]. However, the nonbonded interaction parameters
for polar atoms in the 43A1 and 45A3 GROMOS force fields had not yet been op-
timized to reproduce the above-mentioned thermodynamic properties for liquids
of polar molecules and their aqueous solutions. Such an optimization led to the
GROMOS 53A6 force-field parameter set [48]. It came as no surprise that a
simulation using the 45A3 GROMOS force field for a 12-p-peptide with predom-
inantly polar side chains could not reproduce the 314-helix experimentally ob-
served to be stable in methanol. Only with the 53A6 force-field parameters this
helical fold became stable [39], as is illustrated in Fig. 6.11. For the 20-8-peptide

0.4

Tl e, '

20 40 60 ' 80 ' 100
time [ns]

Fig. 6.11 Atom-positional root-mean-square deviation of the backbone
atoms of residues 2-17 (the structure of the peptide is given in the
figure) with respect to the experimental NMR model structure derived
for the peptide in methanol. Parameter sets 45A3 {black) and 53A6
(red) in methanol [39].
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in solution (Fig. 6.4), the 53A6 force field seems to preserve the 314-helix slightly
better than the 45A3 force field, but overall the picture is essentially the same for
this molecule. -

Not surprisingly, a calibration of force-field parameters for small molecules that
represent the various moieties present in peptide analogs against thermodynamic
data in the condensed phase seems a necessary condition to adequately simulate
the folding equilibria of polypeptide analogs in various solvents. Not only the sol-
vation properties in aqueous solution should correspond to experimental data,
but also those for other solvents such as chloroform, cyclohexane, methanol,
DMSO, acetronitrile and acetone [52], which may be used as solvents for bio-
molecular studies.

6.6 ~ ,
Comparison of Simulated with Experimentally Measured Observables

The validation of simulated folding equilibria by comparison of simulated proper-
ties of the polypeptides with measured ones is not straightforward. First, the ex-
perimental data are generally averages over a conformational ensemble. Deriva-
tion of an ensemble from average values is impossible. On the other hand, the
average of a particular observable, e.g. a NOE or a 3J-coupling constant, may be
rather insensitive to the shape of the underlying conformational distribution over
which the averaging is performed. For example, the folding equilibrium of the 7-
B-peptide discussed before is rather different at 298 K, with 97% 3;4-helix present
from the ensemble at 360 K with only 25% 3,4 helical content. Yet the agreement
with the 21 measured *J-values is as good for both quite different ensembles [53],
as can be seen in Fig. 6.12. Yet, for another peptide, an 8-a-peptide, in DMSO, the
3J-values are sensitive to differences in the conformational distributions in solu-
tion on the one hand and in crystal on the other [42, 54]. In DMSO solution tran-
sient M-and P-helical fragments are present, leading to a broad conformational
ensemble with (*]> = 6.8 Hz, the experimental value. In the crystal a rather nar-
row P-helical conformational ensemble is found with (}J)» = 4.0 Hz close to the
average *J-value (4.2 Hz) of the X-ray structure.

Second, experimental data on folding equilibria are limited in number and ac-
curacy. They may come from X-ray diffraction on crystals, or CD or NMR mea-
surements in solution. The crystal data may only indicate that the fold that was
adopted or preserved upon crystallization from a solution, is likely to be one of
the dominant conformers in solution. However, the particular crystalline fold
may also be induced by crystal contacts or particular co-solvents required for the
crystallization. CD spectra may be very insensitive to the dominant conformers of
an ensemble and may actually be determined by a fraction of the ensemble.
An example of such a situation was reported in [19] where the CD spectrum was
largely due to a conformer that constituted only 18% of the conformational en-
semble. Regarding NMR-NOE spectra, it has been shown that different NOE
peaks may show a very different sensitivity to the conformational ensemble [37].
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Fig. 6.12 Comparison of the 21 experimental averaged *J-coupling
constants measured at 298 K with the corresponding averaged 3)-
coupling constants calculated for the trajectory structures of 50 ns MD
simulations of a f-heptapeptide (see Panel A, Fig. 6.1) in methanol at
four different temperatures [53].

An example of quite different ensembles reﬁroducing the same experimental NOE
and *J-value data for an 8--peptide in methanol can be found in [36]. These data

appeared to be insufficient in number to uniquely determine the dominant con-
former, a 2.5;,-P-helix or a 25-8-helix.

6.7
Characterization of the Unfolded State and the Folding Process

The theoretically accessible conformational space of backbone conformations of
polypeptide analogs depends on the number of easily rotatable torsional angles
along the backbone. Assuming three (trans, gauche*, gauche™) conformations
per torsional angle, the theoretical number of conformations of the 7-B-peptide
discussed before would be 3! or about 10° conformers. Whether all these con-
formers are accessible under physiological conditions can be investigated by clus-
tering all peptide structures from a MD trajectory of a folding equilibrium into
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conformations which are characterized by a maximum atom-positional RMSD be-
tween their backbone atoms. This can be done as follows [17, 44]: the number of
neighbors (that is the number of structures satisfying a given similarity criterion)
is determined for each trajectory structure, with the criteria of similarity between
two structures being the positional RMSD value of their main chain atoms. The
structure with the highest number of neighbors is then taken as representating
the first, most populated, conformation or cluster of structures. After removing
the structures belonging to the first cluster from the trajectory, the procedure is
repeated to find the second cluster or conformation, and so on. This clustering
algorithm can also be applied to two trajectories representing different peptides
of the same chain lengths or generated at different thermodynamic conditions
for a single peptide. If the two trajectories sample the same part of configuration
space and have similar conformational distributions, the resulting clusters will
each have a comparable amount of structures from each of the two trajectories.
If the two trajectories sample disjunct parts of configurational space, each cluster
will only contain members of only one of the two trajectories. The former situa-
tion is illustrated in Fig. 6.13, which shows the result of a combined trajectory
cluster analysis of a simulation of the 7-8-peptide at 360 K arid 1 atm with one at
340 K and 1000 atm [23]. So, the conformations characterizing the unfolded state
at higher pressure are the same as those characterizing the unfolded state at
higher temperature. This combined trajectory cluster analysis has also been

20

Population of conformational cluster {%]

12 3 456 7 8 9 1011 12 13 14 15 16 17 18 19 20
Rank of conformational cluster

Fig. 6.13 Conformational analysis over the combined 50 ns trajectories
of a B-heptapeptide (see Panel A, Fig. 1) at two different conditions:
(grey) 360 K and 1 atm, and (black) 340 K and 1000 atm [23].
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Fig. 6.14 Conformational analysis over the combined 100 ns

trajectories of two f-hexapeptides (structures shown in the figure) at
340 K [55].

applied to two 6-f-peptides carrying different side chains, which made them
adopt different stable folds: a 314-helix for one peptide (black bars in Fig. 14) and
a hairpin for the other peptide (grey bars in Fig. 6.14) [55]. In Fig. 6.14 the result
of the combined cluster analysis of the two trajectories is shown. The conforma-
tional distributions are rather different. The most populated cluster is a hairpin
and the second most populated cluster a helix, as expected. Figure 6.15 shows an
example of two completely disjunct folding equilibrium ensembles of two 6-p-
peptides carrying identical side chains, but differing by the presence of two meth-
ylgroups at all six a-carbon positions along the main chain. These methyl groups
prevent helix formation leading to a completely different conformational ensem-
ble from that of the unmethylated peptide in methanol [19].

Folding pathways can be determined by counting the number of transitions
from and to each conformational cluster [41, 44]. Such an analysis has been
applied to the dynamic folding equilibrium of the 7-B-peptide [44] which has a
314-helix as most populated cluster. At 340 K, more than one pathway leads to
the helical fold. Figure 6.16 illustrates that these pathways are not necessarily
downhill in free energy. We note, however, that in order to obtain statistically
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Fig. 6.15 Clustering of the combined 100 ns trajectories of two -
hexapeptides in methanol at 298 K. The plot shows the population in
percentage per cluster and the portion of structures per cluster that
belongs to the trajectory of each of the peptides [19].

10 A

AG (kJ mol™)

Fig. 6.16 Example of folding pathways at 340
K of a f-heptapeptide (see Panel A, Fig. 6.1),
one from conformational cluster 2 (left-hand
panel) and one from conformational cluster 3
(right-hand panel). The vertical axis indicates
the free energy difference with respect to the

helical conformational cluster 1. The
transition rate (in ns™') between consecutive
clusters is also indicated. Only the two
shortest folding pathways (i.e., those with the
minimum number of intermediate clusters)
are shown [44].
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converged transition rates between conformational clusters very long simulations
are required. _

Finally, we note that the unfolded state of the f-peptides discussed comprises
many fewer conformations than the about 10° theoretically accessible ones [17,
56]. The number of different conformers is rather of the order of 102-103, see
Figs. 6.8, 6.13-6.15. This small size of the unfolded state explains why these pep-
tides fold on a nanosecond timescale.

6.8
Conclusion

The dynamical simulation of folding equilibria of a variety of foldamers at the
atomic level including explicit treatment of solvent degrees of freedom offers the
possibility of analyzing the factors that drive the conformational distribution to-
wards a particular fold. A necessary condition to predict the various stable folds
under different thermodynamic and solvation conditions in agreement with ex-
perimental data seems to be the use of a biomolecular force field that is calibrated
using thermodynamic data of the condensed phase. Currently available comput-
ing power only allows adequate sampling of the conformational ensemble and
the (un)folding transitions for not too large polypeptide analogs. However, the rel-
atively small size of the denatured or unfolded state of polypeptides and the con-
tinuing rapid growth of computing power offer the perspective to simulate the
folding equilibrium of a small protein within the next decade.
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