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Abstract
Over the last 30 years, computation based on molecular models is playing an increasingly important role in
biology, biological chemistry and biophysics. Since only a very limited number of properties of biomolecular
systems are actually accessible to measurement by experimental means, computer simulation complements
experiments by providing not only averages, but also distributions and time series of any definable,
observable or non-observable, quantity. Biomolecular simulation may be used (i) to interpret experimental
data, (ii) to provoke new experiments, (iii) to replace experiments and (iv) to protect intellectual property.
Progress over the last 30 years is sketched and perspectives are outlined for the future.

Introduction
Over the last 30 years, simulation of the motion of bio-
molecular systems at the atomic level based on molecular
models has played an increasingly important role in
biological chemistry and physics [1–8]. This role is, however,
still limited, because the available computing power, although
growing fast, sets limits to the size of the systems that can be
simulated, the time scale that can be covered and the accuracy
that can be reached. Notwithstanding these limitations,
computer simulation of the behaviour of the biomolecular
systems is being practised, because it complements the
experimental methodology of investigation. Only a very
limited number of properties of biomolecular systems are
actually accessible to measurement by experimental means.
Moreover, experiments generally provide averages, over
space (molecules) or time, of measurable quantities, the
distribution of such quantities, again over time or space,
remaining inaccessible, at least for microscopic space and time
scales. This is where computer simulation has its strength by
providing not only averages, but also distributions and time
series of any definable, observable or non-observable, quant-
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ity, for example, conformational distributions or interactions
between separate parts of molecular systems. A second
advantage of computer simulation of (bio)molecular systems
is that it can be used to investigate cause–effect relationships
by individually changing model parameters that cannot be
changed without affecting other parameters experimentally.
For example, the effect of changing the solvent viscosity (by
changing the mass of solvent molecules) on the folding rate
of a polypeptide has been investigated using MD (Molecular
Dynamics) simulation [9] without changing any other solvent
parameter or property. Experimentally, it is not possible to
change single properties leaving all others untouched.

In this very brief report, we outline, in the next section, the
major developments in the area of biomolecular simulation
since the first biomolecular dynamics simulations published
30 years ago [1,10,11]. In the section ‘Is biomolecular dynam-
ics simulation useful?’, we give examples taken from our own
work illustrating the usefulness of MD simulations (i) to inter-
pret experimental data, (ii) to provoke new experiments, (iii)
to replace experiments and (iv) to protect intellectual prop-
erty. In the final section, we outline perspectives for the future.

Thirty years of biomolecular dynamics
simulation
A prerequisite for any molecular simulation is a molecular
model that specifies the various types of interactions between
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Figure 1 Driving force for molecular association

Free enthalpy of association (�G) and its enthalpic (�H) and entropic (T�S) contributions (top panels), its solvent–solvent

(�Hvv = T�Svv) contributions (middle panels) and its solute–solvent (�Huv, T�Suv) contributions (bottom panels) as a

function of the distance between two neo-pentane molecules in pure water (left panels) and in urea solution (right panels)

at 1 atm (1 atm ≡ 101.325 kPa) and 298 K.

the atoms in the systems. Such a model is often called a
force field [12]. The first force fields for biomolecules were
proposed by Lifson and Warshel [13]. Over the years, a
number of general biomolecular force fields emerged and
are still being further extended and refined [4,14–19]. As
the word rightly conveys, in a molecular simulation, the
motion along the (chosen) degrees of freedom is simulated by
solving equations of motion, i.e. those of Newton, Hamilton
or Lagrange, or more recently, when simulating quantum
dynamics [20], those of Schrödinger.

MD simulation of proteins began in 1976 with an 8-week
CECAM workshop on protein dynamics [1], which resulted,
for example, in the publications mentioned above [10,11].
Since then, MD simulation of biomolecules has developed
in different directions: (i) by expanding the number and
types of degrees of freedom, (ii) by refinement of the
molecular models, (iii) by improvement of the search and
sampling power of MD algorithms and (iv) by expanding
its range of applications in terms of types of molecules and
processes simulated. Here, we only mention some examples.

The first MD simulations of proteins neglected solvent
degrees of freedom [10,11]. Introduction of an explicit

solvent in atomic [21] or molecular form [22] did make the
simulations more realistic. Enzyme reactions could only
be simulated by introducing quantum degrees of freedom
[5,23,24]. Minimizing the effects of approximating long-range
electrostatic interactions in one way or the other is still an
issue [25–27]. Although introduction of atomic polarizability
was already an issue at the CECAM workshop of 1976, only
recently biomolecular force fields including this feature have
been published [28–30]. During the 1980s, thermodynamic
perturbation and integration techniques [31] were applied to
calculate complexation free energies for proteins and other
biomolecules. The calculation of the corresponding entropies
is still in its infancy [32]. The computation of non-dynamic
quantities did benefit a lot from the application of a variety
of search and sampling enhancement techniques. For a recent
review of these, see [33]. Sampling techniques, such as replica-
exchange [34], which can exploit massively parallel computers
[35], are currently widely used. Here, we can also mention
the Folding@home project (http://folding.stanford.edu/)
that exploits thousands of computers all over the world
[36]. MD simulation is now routinely used to investigate
the stability of proteins, to simulate the polypeptide folding
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process and in ligand docking. It is a standard tool in protein
structure refinement based on NMR [37] or X-ray [38] data.

Is biomolecular dynamics simulation
useful?
Computer simulation trajectories can be used to interpret
experimentally measured data, e.g. the difference in stability
between protein mutants [39], or to resolve seeming contra-
dictions between NMR and X-ray data on the same protein
[40]. Figure 1 shows an example of the complementarity of
simulation and experiments regarding the driving forces for
molecular association [41]. Because of the exact statistical–
mechanical compensation between the enthalpic (�H) and
entropic (�S) solvent–solvent (vv) contributions to the free
enthalpy �G of association of two neo-pentanes in water
or in urea, �Hvv = T�Svv, these solvent–solvent terms do
not contribute to the driving forces of association. Because
they are part of the �H and T�S of association, they may
mask in these experimentally measurable quantities the real
driving forces: the barrier to association in water seems to
be of entropic nature according to �H and T�S (top left
panel), but is in fact of enthalpic nature according to �Huv

and T�Suv (bottom left panel), which are the contributions
that remain after removal of the exactly compensating �Hvv

and T�Svv terms. Unfortunately, the real driving terms,
�Huv and T�Suv, are only computable, not measurable.

A second feature of computer simulation results is that
they may provoke experiments. For example, in early MD
simulation studies of folding equilibria of polypeptides, it was
found that the denatured or unfolded state of these molecules
comprises much less relevant conformations than expected
on the basis of simple folding models [42]. Figure 2 shows that
the folding equilibrium β-heptapeptide comprises only 102–
103 conformers instead of the 108 expected ones [43]. These
simulation results provoked experimentalists to enhance their
effort to find a methodology to characterize the rather small
unfolded conformational state in terms of residual structure.

Simulation can only usefully replace experiments when
its results are more accurate than the measured ones, which
is for biomolecular systems rarely the case. However, such
a rare example is shown in Figure 3, which displays the
simulated and the measured free energies of binding of
various biphenyl ligands to the oestrogen-binding domain
of the oestrogen receptor [44]. The variation between the
different experimental values (horizontal bars) is 4.2 kJ/mol
larger than the average deviation of the simulated free energy
of binding from the experimental free energy of binding.

Figure 3 also illustrates the use of the so-called one-step
perturbation technique [45] to compute up to 108 [46,47]
free energy differences for closely related systems from only
two simulations. The atoms displayed as dotted spheres are
treated as soft atoms, which can be replaced by any atom
in the post-MD simulation calculation of the free energy
of binding. With four atoms (H, F, Cl and Br) and nine
substitution sites, this calculation yields 49 = 262144 free
energies of binding from just two MD simulations. Needless

Figure 2 Number of clusters (conformers) of a β-heptapeptide at

340 K and at a pressure of 1 atm (�) and 1000 atm (�) as a

function of time

In the upper panel, each point represents the total number of clusters

(conformers) at the corresponding time point, and in the lower panel,

the number of clusters (conformers) that make up 95 % of the trajectory

sampled at the corresponding time point.

Figure 3 Free energies of binding of biphenyl ligands to

oestrogen receptor

(A) Experimental compared with calculated relative free energies

of binding for 16 hydroxylated biphenyls. The solid diagonal line

corresponds to a perfect reproduction of experimental values. Horizontal

lines connect the different experimental values for a single compound.

(B) Unphysical reference state for polychlorinated biphenyls. The nine

substitution sites are shown as dotted spheres.
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to say, this technique may be of use in the protection of
intellectual property by patent application.

Perspectives
Present day biomolecular dynamics simulation is limited in
its application by four major problems [7]: (i) the force-field
problem, (ii) the search (sampling) problem, (iii) the ensemble
(sampling) problem and (iv) the experimental problem.
Regarding each of these issues, progress is still being made and
expected. Polarizability will be introduced in standard bio-
molecular calculations. Force fields will be extended to cover
in a consistent manner a variety of non-aqueous solvents or
co-solvents. Hybrid quantum–classical [QM/MM (quantum
mechanical/molecular mechanical)] simulation will benefit
from improved accuracy and efficiency of the quantum part of
the calculation, which currently determines its overall accur-
acy. In order to be able to simulate very large systems, such as
proteins embedded in membranes or the ribosome or nucleo-
some, simplification of molecular models by averaging over
atomic degrees of freedom, so-called coarse graining, is a ne-
cessity. Multiscale simulation, i.e. combining fine-grained and
coarse-grained models in a consistent manner, will allow the
simulation of larger systems over larger time scales without
losing the possibility of recovering atomic detail when neces-
sary [48,49], more than enough to do for the next 30 years.
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