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4.251 Biomolecular Simulation

Computer simulations on models of physical systems have been carried out for more than 30 years now. The first Monte
Carlo simulations on liquids represented by spheres and hard disks were reported in 19533." The classical equations of
motion for such systems were first solved in a molecular dynamics simulation in 1957,% after which it still took several
years to simulate a Lennard-Jones fluid in 1964° and liquid water in 1971.* Only 6 years later was the first molecular
dynamics simulation of a protein published opening the way to true biomolecular simulation.® After this landmark, the
field has seen tremendous improvements, both in terms of methods, algorithms, and parameters that describe the
physics behind the models®® and in terms of system sizes, system complexities, and simulation timescales.'*!!
These developments have turned molecular dynamics simulations into a valuable tool, complementary to
experimental investigations, to probe into the structure, dynamics, and activity of large biologically relevant molecules
and molecular complexes. After careful validation of the methods and parameters that are involved, it offers the
possibility to explore such biomolecular systems at a time and space resolution that is often inaccessible to experiment.
[t has been proven invaluable in the structure determination of proteins and nucleic acids from both x-ray and nuclear
magnetic resonance (NMR) experiments and is regularly used to explore the flexibility and dynamical behavior of such
moiecules. The thermodynamic information that can be obtained from computer simulations allows for an analysis and
understanding of it in terms of molecular processes and for a prediction of molecular properties. More and more often,
molecular dynamics techniques are being used by medicinal chemists and become integrated in the multidisciplinary
research of molecular medicine. Molecular flexibility and the rigorous inclusion of entropic terms in the computational
estimate of binding affinity are more and more being recognized as essential parts of computational modeling.
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Applications of Molecular Dynamics Simulations in Drug Design

Free energy can be seen as the driving force of virtually all molecular processes. Already at an early stage, simulations
were used to calculate free energies and free enthalpies of molecular systems.!?"!® The underlying thermodynamic
and statistical-mechanical theory had been developed years earlier'®!? and many ‘methods to calculate these
thermodynamic quantities have been suggested over the years.'®2® This chapter briefly reviews the numerical
integration of the equations of motion and the statistical mechanics behind the simulations. It then continues to
discuss several practical methods to calculate free energies from the simulations, focusing mainly on methods that have
a theoretical foundation in staristical mechanics. To give a specific example, we will discuss various aspects of drug

design where molecular dynamics simulations can make significant contributions.

4.25.2 Equations of Motion

Consider a system that contains N particles that are treated explicitly. Often, these particles are atoms, but also groups
of atoms can be treated as a single particle, such as for instance an aliphatic CH, CH,, or CHj; group. In classical
simulation, such a system is fully defined by the positions, r, and the conjugate momenta, p, of the individual particles,
where r and p represent 3V dimensional vectors. We will use r; and p; for the three-dimensional vectors describing the
position and momentum of particle «. In the absence of constraints and velocity dependent forces, the Hamiltonian of
the system can be written as

H(r,p) = K(p) + V(r) (1]

where K(p) is the kinetic energy which can be calculated from
1,2
K(p) = sz, b 2

Here, we have used the definition of the momentum p;=m,v;, with m; the mass of particle 7 and the velocity v; the time
derivative of the position of the particle, v,=dr; / dt.

V(r) in eqn [1] is the potential energy, describing the interactions between the particles in the system and possibly
external influences on the system. It is a function of the particle positions r. The functional form and parameters
describing V(r) is called a force field. There are several well-known force fields for biomolecular simulation described
in the literature, such as AMBER,”*' CHARMM,**** CHARMm,* ECEPP/3,%** ENCAD,*”*® GROMOS,***' and
OPLS.*243 Assuming that the potential energy has been properly defined and parameterized, one can calculate the
force f; on particle 1 as the negative derivative of the potential energy with respect to its position,

f, = aar,V(’) 3)

Using this force we can write down the equation of motion according to Newton,* which states that the second time
derivative, or acceleration, of the position of a classical particle is equal to the force exerted on it divided by its mass,

d? 1

—r; = —f; 4
dlzr, m,'f’ [ }

One can now integrate the equations of motion for all particles simultaneously and follow the movements of the
particles in time. One, but not the only, way of doing so is through the leapfrog algorithm,*® where the positions and
velocities are propagated numerically at shifted times using a time step Az,

1t + Ar) = 1;(2) + vi(r + JAr) - Ar (5]

Vit +387) = vilr — 1A8) + m i(0) - A [6]

The application of eqns [5] and [6] will lead to a trajcctory of all particle positions in the system. Alternative
integration schemes such as the Verlet® or Beeman*” algorithms can be shown to produce the same positional
trajectorv.*® The time step should be chosen sufficiently small to correctly integrate the fastest motion in the system.
In biomolecular simulation, the fastest motions would typically be the bond vibrations, requiring a time step of 0.5 fs.
For this rcason bonds are often not treated as flexible degrees of freedom, but the bond lengths are constrained to a
given value.” Bond length constraints do not greatly affect the overall dynamics of the system and allow for an increase
of the time step to typically 2 s.3%! Whether the particle motion represents the physically relevant dynamics of the
system depends directly on the quality of the force field.
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4.25.3 Statistical Mechanics

According to the ergodic hypothesis®® one can simulate a single molecule with its surroundings for a period of time and
get time-averaged molecular properties that approach the experimentally measurable ensemble averages. This means
that from a simulation of a system in time, we can get conformations that correspond to a thermodynamic ensemble or
state point. In a simulation that is performed according to eqns [5] and [6] the total energy of the system, H or E, will
be conserved as well as the number of particles, N, and the volume, ¥ This corresponds to the microcanonical (N, /E)
ensemble. Other relevant ensembles are the canonical ensemble (N, ¥ T}, in which the temperature, 7, rather than the
energy is kept constant and the isothermal-isobaric ensemble (N, p, T'), where the pressure p is constant additionally.

Simulations corresponding to these ensembles can also be carried out by adding the proper algorithms to the simulation

protocol.” %3

The probability to find a specific configuration of the system defined through the positions and momenta of the
(indistinguishable) particles is defined by the phase-space probability P(r,p). In the canonical ensemble one can write
the phase-space probability as

e—H(r.p)/kT e H(rp)/kT
[ [e-Hrp/BTdp dr ﬁ3NN!Z(N, V,T)

Pyyr(r,p) = 7]

where £g 15 the Boltzmann constant, # is Planck’s constant, and Z(N,¥T) is the canonical partition function, defined as

1
Z(N,V,T) = / / e Hre/bTqp dr (8]
In the isothermal-isobaric ensemble the partition function is written as
1
Z(N,p, T) = W/ / / C-(H(r’p)_hﬂV)/tBpo dr dV [9]

and the phase-space probability also depends on the volume of the system,
e~ (H(rp)+p¥)/ksT
VINNI'Z(N,p,T)

Ppr(r,p, V) = [10]
For any experimentally measurable property Q, that may depend on r and p, the measured value will be equal to the
expectation value of the property over the whole phase-space. For the canonical ensemble we write

[ [O(r,p) - e Hrp)/kT dp dr
NVT //Q(I‘ p P(l' P dp dr = ffC_H(rp)/‘Bpo dr [11]

where angular brackets indicate an ensemble average. The ergodic hypothesis can now be described mathematically by
stating that such an ensemble average should in the case of sufficient sampling be equal to the long-time average of the
time dependent quantity Q.

(O yyr= lim /Q [12]

T—=0C T

A major limitation in molecular dynamics simulations is often the fact that for many biologically interesting properties
the timescales reached in computer simulations are still not long enough to obtain convergence to this limit.

4.25.4 Calculation of Free Energy

A key equation from staristical mechanics links the Helmholtz free energy, 4, of a system to the canonical partition
function,

AN, V,T) = —kgTInZ(N,V,T) [13]
Similarly the Gibbs free enthalpy, G, can be calculated from the isothermal-isobaric partition function,
GIN,p,T)=AN,V.T)+pV = —kpTInZ(N,p,T) [14]

From these cquatiuns we oun see chue al one needs o do n order to caleulate the tree cnergy of the aysterm 15 to
calculate the integral over all phase space in eqns [8] or [9]. Or in terms of a simulation, one needs to sample until the
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system has visited all of the conformational or configurational space. If we now recall that r and p in these integrals
represent 3N-dimensional vectors, it becomes clear that we can not hope to calculate the absolute free energy of a
system containing more than a handful of particles.>

4.25.4.1 Overlapping Ensembles

Fortunately, in order to understand the behaviour of a system one does not need to know the absolute free energy, but
rather the change in free energy corresponding to some process or state change. For example in the case of solvating a
small molecule in water, we are interested in the free energy of the solvated system relative to the molecule in the gas
phase. In the case of a ligand binding to a protein we compare the free energy in the bound state to that of the ligand in
solution and in the case of DNA base pairing we compare the free energy in the paired state to that of a situation in
which both bases are unpaired. For the relative free energy between two states A and B of the system we can write,
Zg(N,V,T)

ZA(N, V. T)

ffc—ﬂn(rvp)/l'anp dr

[ [e-Atol/kTdp dr

[ e HaER)~HA(rR) /AsT = H(e0) /16T Gy

ffc_HA(rvP)/"Bpo dr
_,(,BT]n<c~(HB—HA)/1’BT>

AABA =AB —AA = —I’BTIn

—l’B Tin

—1’3 Tlnf

. 3]
where Z, and Zg indicate the canonical partition function of the system while it is in the corresponding state. We have
used the short notation Hy for Ha(r,p) and likewise for Hp. It is clear that the free energy of state B relative to that of state
A can be calculated from an ensemble average of the Boltzmann factor, e~ (#3—#a)/&T 4t grate A. Equation [15] is a
formulation of the well-known perturbation formula, due to Zwanzig.!” Making use of ergodicity, the ensemble average in
this equation can be obtained from the time average of the exponential from a simulation at state A. The sampling problem
that was hinted at in the previous section, is reduced for the calculation of a relative free energy. One no longer needs to
sample all of conformational space, but only those parts of conformational space that are relevant to and energetically
different for both states A and B. If the conformational space relevant to state B is very different to that of state A, it is not
likely that a simulation at state A will yield an accurate estimate of the ensemble average. Only if the ensembles of states A
and B show considerable overlap, can one hope to reach convergence in the ensemble average within reasonable time.

Graphically, this is depicted in the top panel of Figure 1. From a simulation of state A, that samples configurations in
the left-hand side of a one-dimensional conformational space, one will not expect to accurately reproduce the ensemble
average for the free energy difference with state B, which corresponds mainly to the right hand side of the conformational
space. For a state B (dashed curve) the ensemble average in eqn [15] is more likely to reach convergence.

4.25.4.2 Thermodynamic Cycles

As a first attempt to calculate free energy differences one can try to formulate the problem in terms of free energies
between states which are as close as possible in conformational space. This can for instance be done by recognizing the
fact that a computer simulation is not limited to physical processes, but can also be used to calculate free energy
differences for nonphysical processes. Knowing that the free energy is a state function and does not depend on the
pathway connecting the two states of interest, one can try to reformulate the problem using a thermodynamic cycle.”
Consider for example a case where one is interested in the free enerav of binding of a compound to a receptor. For
pharmaceutical purposes, one is often mostly interested in the free enercy of binding relative to another compound. In
Figure 2 the binding processes for compounds 1 and 2 to a receptor are depicted. The relative frec energy of binding
can be calculated as

AAAping(2,1) = Adping(2) — Adpina(1) [16]

One can imagine that the ensembles corresponding to the end-states of the binding processes are extremely different
since the compound is in the free state physically not even near the protein. Simulations that cover the spontaneous
binding of a compound to a protein are still very much beyond currently accessible timescales. From the fact that the
free energy is a state function, however, one can also calculate the same relative free energy of binding from the
difference between two mutation free energies,

AAding(2,1) = Adzi(bound) — Ady (free) [17]




A

Applications of Molecular Dynamics Simulations in Drug Design 655

_..-.ﬂ-._._-_._..__....,__v...L\. -

T

Conformational space

-

Figure 1 Pictorial representation of the distribution in conformational space for ensembles of different states. The free energy
difference between states A and B cannot be computed directly from egn [15] in case of finite sampling (top panel). Muitistep
approach (middle panel). One-step from an unphysical reference state (lower panel). See text for details.
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4.25.43  Free Energy Perturbation

The middle panel of Figure 1 suggests one possibility to obtain the free energy difference between states A and B,
commonly known as the free energy perturbation method (FEP).**!° The free energy difference that will not converge
can be divided into smaller steps for which the free energy change can be calculated individually. This requires the
definition of a system that is in an intermediate state between A and B, which can be done using the coupling
parameter approach in which the Hamiltonian is written as a function of a coupling parameter, A, e.g.,

H(r,p,\) = (1 -1) - Ha(r,p) + A - Hp(r,p) (18]

Using this definition we ensure that at A=0, H(r, p, 0) = Ha(r, p) and at A= 1, H(r, p, 1) = Hg(r, p). At intermediate
A-values the Hamiltonian is a linear combination of the two. A coupling parameter between different states of a system
was already used by Kirkwood in 1935'® and goes back to the work of De Donder 8 years earlier.’® Different functional
forms and pathways interpolating the two end-state Hamiltonians can be used as well.>’° As depicted in the middle

panel of Figure 1, the free energy between states A and B can now be calculated as the sum of N, — 1 free energy
differences between adjoining A-points

M—=2 M=2
Mun =3 Ay~ = > _1,8T|n<e-(ﬂ<r.p.z,-ﬂ>—H<r,p.x,'>)/tn7>k 19]
=0 =0 i

This requires a simulation to be carried out at every (except for one) of the N, A-values, in order to calculate the
ensemble average at that A-point.

4.25.44  Thermodynamic Integration

A slightly different approach is taken in the thermodynamic integration method (TT).’® It also makes use of the
coupling parameter approach, as in eqn [18]. The free energy difference can be calculated as the integral from A =0
(state A) to A=1 (state B) of the derivative of the free energy A with respect to 2,

LdA(n)
Adpy = | ——=d: 0
) d (20]

Direct application of eqn {13] yields for the derivative

d4(r) d 1 —H(rp\)/ksT
T _d_k,(_"(’BTlnﬁN_M//e ] dp dr

d_d): [ [e-HEpNMT gy gy
T ffc—H(r,p,k)/l’gpo dr
B ffaﬂg,;;p’” C~H(r,p.k)/kBpo dr

f f'é—H(r,p.x)/h,Td_pE

B <%>A -

being exactly the ensemble average of the derivative of the Hamiltonian with respect to A from an ensemble generated
at that 7-value. The free energy difference can be calculated from a numerical integration of this ensemble average
obrained from N, simulations at different A-values. Like for the free energy perturbation approach, several simulations
at intermediate values are required. The approach of sampling different areas of conformational space at different
A-values, is depicted in Figure 3 in the upper left panel. In this plot, state A in Figure 1 corresponds to the lower part
of the one-dimensional conformational space, while state B corresponds to the upper part of the vertical axis.

= '—118

4.25.45 Slow Growth

The slow growth approach can be seen as a modification of the FEP or TI approaches. Historically, T1 calculations were
originullv carled vatin w slow growth muner Tnscead of dimulating at discrete A=points, the value of & iy increascd af
every time step such that A =0 (state A) at the start of the simulation and A =1 (state B) at the end of the simulation.

This is depicted by the bold line in the upper right-hand corner of Figure 3. It can easily be shown that if eqn [18] is
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Figure 3 Pictorial representation of motion in conformational and A-space for different approaches to free energy calculations.
See text for details.

used to interpolate the Hamiltonian between states A and B, applying the perturbation formula [19] or the
thermodynamic integration formula [20] will yield exactly the same estimate of the free energy difference. For
different A-dependencies of the Hamiltonian, the different approaches might result in different numerical results.

The major drawback of the slow growth approach is that the ensemble averages at every A-value in eqns [19] or [21]
are estimated from a single configuration. Obviously, this will be a very poor estimate if one considers the ergodic long
time limit of the average in eqn [12]. In other words, because the A-value is continuously changing, the system is never
allowed to reach equilibrium. The motion of the particles will never be able to adapt to the new, slightly changed
Hamiltonian, because the latter is constantly changing. Only if the transition from state A to state B is performed very
slowly, using very long simulations, will the resulting free energy estimate converge toward the actual value, even
B though the conceptual error of approximating an ensemble average by a single value will remain even under such
3 conditions. A slow growth estimate of the free energy difference is fundamentally a nonequilibrium estimate.*® For this
- reason, the pure slow growth approach is no longer applied on a large scale. However, it has found a new application in
the so-called fast growth approach, which will be discussed in Section 4.25.4.7.

4.254.6  A-Dynamics

Reminiscent of a slow growth approach is a method that is depicted in the lower left-hand panel of Figure 3. In the
A-dynamics approach,®® the value of X is also continuously changing, but is treated as another degree of freedom in an
) extended Hamiltonian. The system is free to dynamically optimize the value of A during the course of a simulation,
¥ possibly overcoming barriers that would occur in a slow growth simulation. The free energy is obtained by calculating

the potential of mean force as a function of A. To make sure that the system gradually moves from A =0 to A =1, and
that all values of A are sampled sufficiently, A is often restrained to stepwise increasing values, through an umbrella
sampling technique.®' As in the FEP and TI approaches, several simulations at different A-values will thus be required
A to obrain the free energy difference. The A-dynamics method is particularly used to have one or several coupling
parameters scale between different ligands bound to a common receptor. From the average value of the A-values, the
preference of the system for one of the ligands can be determined. This raises the question of what is the physical
meaning of a system that prefers a ligand that consists for 80% of compound 1 and 13% of compound 2 and 7% of
compound 3. A similar approach is the chemical Monte Carlo approach, where a single ligand is bound to the protein at
all times, but the ligand changes character based on a random, Monte Carlo method.®*~%*

Btk st S R e e
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42547 Fast Growth

Recently, the slow growth method to obtain free energy differences has received renewed attention thanks to the work
of Jarzynski.®>®® It was shown that from a canonical collection of N4 nonequilibrium free energy estimates A4’ such as
those obtained from slow growth simulations, one can obtain an equilibrium estimate for the free energy from

1 &,
_ - [T
AAdgp = —,I’BT]nN—A E c Ba/ %P [22]

=]

The upper right-hand corner of Figure 3 demonstrates this approach based on slow growth simulations. Many different
slow growth simulations from a canonical ensemble of starting configurations lead to many different trajectories. The
required sampling of conformational space, represented by the vertical lines in the upper left-hand corner of Figure 3
ts not obrained sequentially at discrete A-points, but is acquired as more slow growth trajectories are sampled. This
procedure has become known as the fast growth method.®”%® Even though the Jarzynski equation is often applied to
slow growth estimates to obtain the true free energy difference, it is not restricted to it. In principle it can be applied to
any canonical ensemble of (nonequilibrium) free energy estimates.

4.25.4.8  One-Step Perturbation

The methods to calculate the free energy difference between states A and B in Figure 1 that have been discussed so
far were all aimed at gradually changing the system A into system B, be it in a limited number of discrete steps, or in a
continuous, but nonequilibrium manner. The one-step perturbation method takes a different approach. It is based on
the free energy perturbation formula [15], but tackles the problem of nonoverlapping ensembles by generating a single,
broad ensemble, as displayed in the lower panel of Figure 1. The underlying idea is that we use a single, not
necessarilv physical, reference state R of which the ensemble shows overlap with the ensembles of both states A and B.
For each of these states the free energy difference from the reference state can be calculated directly from a single
simulation of the reference state using eqn [15], or

Adag = An — Ap = —,éBTln<c‘(”A‘”R)/“‘“T>R 23]

giving rise to the name one-step perturbation.®” The free energy difference between states A and B is then simply

AAdps = Adpr — Adag (24]

One might argue that we have now only shifted the problem from obtaining overlap between states A and B to
generating a reference state that covers both of these states simultaneously. A solution to this problem can be found by
recognizing that the formulae leading to Adga in eqn [24] do not require the reference state R to actually correspond to
a physically meaningful state. In the example of calculating the relative free energies of two species, it is not required
that the reference state corresponds to a real molecule itself. In fact, a considerable broadening of the ensemble can be
obtained by making some of the atoms in the reference state ‘soft.”’®”! That is, let the interaction of these atoms level
off to a finite value at the origin, rather than to an infinitely high repulsion. See for instance Figure 3 in Oostenbrink
and van Gunsteren’? in which it is shown that such a reference state samples both configurations in which an atom is
present as well as configurations that closely resemble situations where the atom is not there at all. The ensemble that
is obtained by simulating an nonphysical reference state shows overlap with both the ensemble that corresponds to a
simulation of the real state A and the ensemble of the real state B. In fact, the method is not restrictive to states A and
B. As indicated in the lower panel of Figure 1, the reference state can also show overlap between additional states of
interest, C, D, and E. From the single simulation of the reference state, free energies between all these states can be
obtained. In addition, structural information about the real states can be obtained by a close inspection of those
configurations from the simulation of R that contribute most to the ensemble average in eqn {23]. Obviously these
configurations will belong to the most relevant configurations for that particular real state.

Equation [23] can be seen as an application of the Jarzynski eqn [22] with an infinitely fast sampling of the
individual free energy estimates, A4’ = Hx — Hp, taken at every configuration of the simulation of state R.

4.25.49 Other Methods

In this section several methods to obtain free energies will be discussed which have a more empirical background.
These commonly calculate the free energy difference between states A and B from simulations at these states, either
by estimating the absolute free energies for both end-states or by computing specific energetic differences between
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the states.™*”* The advantage of such approaches is that one only needs to simulare systems with physical relevance, as
opposed to the previously discussed methods thar all involve simulations of nonphysical states of the system. However,
compared to the one-step approach in which the number (few) of simulations is independent of the number of real
states, here this number of simulations is at least equal to the number of real states.

The first method that will be discussed is the linear interaction method (LIE) due to /o\qvist et al.”>7° It has found
widespread application to calculations of ligand—protein complexation free energies’’ and of free energies of solvation
for small compounds.” The free energy difference between the states A and B is written as

Adgy = o A<Vvdw>BA+B A<VEI>BA+Y (25]

where AP % .. is the difference of the ensemble average of the van der Waals energy in states B and A, and
ALV >4 is the difference of the ensemble average of the electrostatic energy in states B and A. Often only the
contribution to these energies that are expected to change most are taken into account. In the case of a ligand binding
to a protein, where state A represents the ligand in water and state B the ligand bound to the protein, this would
typically include only the interaction energy of the ligand with its surroundings. o, B, and y are empirical parameters
that are obrained by fitting calculated free energy differences to experimental data for a set of compounds. In some
cases y depends on the solvent accessible surface area (SASA) of the molecule of interest. This means that a learning
set of experimental data to obtain these empirical parameters is required to calculate free energies for similar systems.
From linear response theory, a theoretical value for B of 1/2 can be derived, which seems to hold well for ionic
compounds, but is less accurate for dipolar and potential hydrogen bonding compounds.”®

Another popular method is aimed at estimating the absolute free energy for the end-states of a simulation
(excluding the kinetic energy). In the MM-PBSA method, the free energy is estimated from four contributions, using®

(A) — <VMM> + <VPB> + <VSA> _ TSMM [26]
MM s the molecular mechanics potential energy as in eqn [1], VB is the electrostatic solvation (free) energy of the
solute, as calculated from a numerical solution of the Poisson-Boltzmann equation, /" is a nonpolar contribution to the
solvation (free) energy, estimated from the SASA of the solute, 7'is the temperature, and SMM i< the configurational
solute entropy, which can be estimated from a quasiharmonic analysis or a normal-mode analysis of the molecular
dynamics simulation. The accuracy of the MM-PBSA method is generally lower than conventional free energy
perturbation calculations due to the numerous approximations and assumptions that go into the calculation of
especially the last three terms. However, the computational gain is significant and impressive correlations with
experimental free energies are often reported.

Empirical free energy scoring functions are popular for computer-aided molecular design purposes.®' In general, the
free energy of ligand binding is estimated from an equation involving several terms and empirical parameters. For
example, such terms can depend on the presence of hydrogen bonds or hydrophobic contacts between the protein and
the ligand, or can be related to the overall partition coefficient (log P) of the ligand, the solvent-accessible surface of the
ligand or size of the protein—ligand interface. The parameters are usuatly obtained from a regression analysis on a number
of protein-ligand complexes with known binding affinity. Scoring functions are frequently used in automated ligand
8283 or by programs that duck a given ligand into the binding site of a prorein.®**¢ Typicully, only a single
or a few rigid conformations of the protein (or even the ligand) are considered, which severely limits the reliability and
the rhearerical supnare of these approaches. On rhe ather hand, examples are known where the conformational chanees

design programs,

olecular dynamies simulations seem ro have a limited influence on the estimated free energy values

Example: The Estrogen Receptor

lescribes examples of usage of the methods thar were introduced above. Molecular dvnamics simulations

ful tor drug design purposes on many different targers.™ 7 Here, we will focus on the ligand-binding

gen recepror. The estroge :pror is 4 member of the nuclear hormone receptors and plays

™,

velopment, and maintenance of a diverse range of tssues. [t consists of an N-termin
un. a higand-binding domain, and a C-rerminal gerivation domain. Upon binding of an agonist o
gand-binding domain 4 conformartional change in the estrogen receptor takes place. allowing it to homodimerize and
ntly to translocare to the nucleus. Here, the DNA-binding domam directly interacts wich response elements
:A LVATING OF [CPressing Transe i't;nli-n-.l : \part from rthe physinlogical effects, the estrogen

CCPLor 18 tved n a range of diseases such as breast cancer, osteoporosis, endometrnal cancer, and prostace
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rurally occurning estrogens are steroid hormones, such as the endogenous ligand 17f-estradiol. Apart from this

v higand, the estrogen recepror s known 1o show affinity for a wide range of structurally diverse compounds

ithet *SITOECNS, PCSTI ides POy lilorinared ].1i|'*|';\ -I‘.lh ||’f :I"'.“'\ ‘1111‘1 ['-U{‘-'l_'\'L_||c ATOIMmar
I PAH ' products of incomplere combustion of fossil fuels. wood, and other organic
uch are ubiqumrous in the environment, Oxidative biotransformation i“. evtochrome P450 1rrrodu

Troey] tps, wl tructures that can mimic estradiol.'' =" Everyday foodstuffs are another source of
nlike compounds. Some foods are known to contain a wide range of phvioestrogens. such as the isoflavonoid

1 dai show estrogenic acoiviry in vitro and in vivo. The most important human sources of thes

1011 and soybean products. "% Althouph the production and use of polvehlornared biphenyls was

> late 19708, thev have sull been observed in all kinds of tssues and ¢ grnz.-:l- 47 Again, one of the

metabohc pathways of the PCBs involves the hvdroxvlatlon of (one of the) aromatic rings,''® after which the affinicy for
the estrogen receptor is altered.''’

Several crystal structures of the estrogen receptor ligand-binding domain in complex with various agonists and
antagonists are available from which it becomes clear that the ligand occupies a deeply buried, largely hydrophobic
cavity within the ligand-binding domain. In most structures there is no clear path or channel connecting this cavity
with the exterior of the protein, in contrast to typical protein-ligand complexes. In addition, the structure of an
antagonist bound to the estrogen receptor ligand-binding domain shows that a bulky side chain moiety of the antagonist
serves to prevent the formation of the active tertiary structure of helices 11 and 12, known to be crucial for
activiry, 20121

The overall topology of the estrogen receptor ligand-binding domain, the wide structural diversity of known
agonists, its physiological relevance, and the availability of crystal structures of the target make the estrogen receptor an
ideal candidare to apply and develop computational methods for the prediction of binding affinities, to be used for drug
design purposes. The following sections will describe some of our experiences of molecular dynamics simulations and
free energy calculations of the estrogen receptor ligand-binding domain, the prediction and structural interpretation of
binding affinities, and the design of a new ligand binding to the estrogen receptor.”>!01122123

4.25.5.1 Simulation of Known Ligands

A detailed understanding of the structure and dynamics of protein—ligand complexes and the interactions between
proteins and ligands has proven to be very helpful in designing new potent drugs. Producing crystallographic structures
of many different ligands is still very time-consuming and only provides structural information about the complex. In
order to capture and understand the fiexibility of protein and ligand, molecular dynamics simulations are especially well
suited. Such simulations have been performed on the estrogen receptor ligand-binding domain, complexed with the
synthetic estrogen diethylstilbestrol (DES) using the crystal structure 3ERD'** from the RCSB Protein Data Bank.'?
This crystal structure contains residues Ser305 to Leu549, while the side chains of 18 residues were not resolved and
modeled according to standard side chain configurations from the GROMOS96 simulation package.>®'%° The estrogen
receptor ligand-binding domain-DES complex was solvated in a periodic rectangular box of 520 nm?, filled with 15824
explicit SPC water molecules.'?” After proper equilibration the system was simulated for 1ns, at a constant
temperature of 298K and a constant pressure of 1 atm.

Before exploring the protein-ligand dynamics and the interactions between them, the simulation needs to be
validated in terms of energetic and structural stability. The first is done by ensuring that the potential and kinetic
energy have converged to reasonably constant values, while the latter is often expressed in terms of the atom-positional
root-mean-square deviation from the initial (crystal) structure.'* The presence and stability of secondary structure
elements over the course of the simulation can be calculated as well, where it should be noted that these are not
primary experimental data. The crystal structure from which the secondary structure elements are inferred is merely a
model that represents the primary experimental data (electron density or rather structure factor amplitudes) best. One
could also compare to primary structural data, such as NMR derived upper bounds to proton—proton distances (or
rather NOE intensities).

A well-established estrogenic pharmacophore model consists of two hydroxyl groups, at a distance of 1.0 to 1.2 nm.
At least one of the hydrowl groups is bound to an aromatic ring and in between the two hydroxyl moieties, the estrogen
is mainly hydrophobic.''" From the crystal structures these pharmacophoric features could be explained by a hydrogen
bonding network consisting of Glu353, Arg394, a water molccule, and the aromatic hydroxyl group of the ligand on the
one (proximal) side and a hydrogen bond between His524 and the other hydroxyl group on the other (distal) side
(Figure 4). From the simulations, the occurrence of protein-ligand hydrogen bonds was monitored. This analysis
revealed that the hydrogen bonding interactions are highly dvnamic; hydrogen bonds are formed and broken
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Figure 5 Reference compound (REF) used in the free energy calculations. Soft atoms are represented as gray circles.

continuously over time. While none of the hydrogen bonds at the proximal side of the molecule was present for more
than 60% of the time, this hydroxyl group is always involved in at least one hydrogen bond, and forms on average 1.5
hvdrogen bonds. The distal hydroxyl group forms a hydrogen bond to His524 for 97% of the simulation time.

During protein solvation in the computational box, two noncrystallographic water molecules were added near one of
the ethy! groups of the DES in a hydrophobic cavity. These waters leave the binding site past His524 and toward the
charged moiety of Lys520. No other water molecules enter the binding site, and the crystallographic water molecules
found in the hydrogen bonded network remain trapped next to the ligand over the entire simulation. Once the added
water molecules have left the binding site (after 300 ps), the ethyl group of DES shows much more flexibility in the
cavity as was observed from the fluctuations of the dihedral angle. This is relevant information that can be used in the
design of alternative ligands.

4.25.5.2 Calculation of Binding Free Energies

Thermodynamic integration was used to calculate the free energy of ligand binding between DES, estradiol, and
genistein. These compounds are quite different to one another and relative binding affinities were obtained that agree
well with experimental data. However, for drug design purposes TI is often too inefficient to screen muitiple
compounds on their binding affinity. In order to estimate the potential toxic effects of modified hydroxylated
polvaromatic hydrocarbons through the estrogen receptor, the one-step perturbation method was applied. As a
reference state, the compound (indicated with REF) in Figure 5 was used, in which the indicated atoms were
described by the so-called soft-core potential.’® For these atoms, the repulsive singularity at the origin was absent,
allowing surrounding atoms to show considerable overlap with these atoms from time to time. In this way, che broad
ensemble in the lower panel of Figure 1 was obtained, that overlaps with the ensembles that would be generated for
the compounds listed in Figure 6.

By applying eqn [23] over a 1-ns trajectory of this rcference state in the unbound state (solvated in water) and when
bound to the protein (solvated in water), the relative free energies of binding that are indicated in Figure 6 were
abmined. From a comparison of computed free energies of binding relative 1o the reference state to the experimental
values, the free energy of binding for the (unphysical) reference state can be estimated as about — 57 kJ mol ™ ' It can
be seen from Figure 7 that the calculated relative free energies of binding compare reasonably well to the
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Figure 6 Compounds for which the relative free energy of binding was calculated. Indicated are free energies of binding using
an estimated binding affinity of the reference compound of — 57 kJmol~ .

experimental values, with an absolute mean error of 1.7 k] mol ~'. The maximum deviation occurs for compound 4 and
is still only 3.1 k] mol ™",

It is important to note the efficiency gain of the one-step perturbation method as compared to the other methods
described in Section 4.25.4. Here, nine relative free energies of binding were calculated from two 1 ns simulations.
Alternative methods, such as TI or FEP, would require at least eight sets of simulations, each consisting of typically
10-20 simulations at different intermediate A-values of several hundreds of picoseconds.

4.255.3  Structural Interpretation

Apart from the efficiency of the free energy calculation obtained at the expense of a somewhat reduced accuracy, an
important asset of the one-step perturbation method is that it allows for an interpretation of the results at a molecular
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Figure 7 Graphical comparison of experimental and calculated results for the binding free energies of the indicated ligands.

basis. From the trajectory of the reference state, one can extract those configurations of the protein-ligand complex that
contribute most to the ensemble average in eqn [23]. The configurations that show the largest Boltzmann probability can
then be compared for different real ligands and a structural explanation for different free energy values can be obtained.

Consider for example the polyaromatic hydrocarbons and calculated free energies of binding in Figure 6. It is
interesting to note that the addition of a methyl to structures 1, 3, and S to obtain structures 2, 4, and 6 is calculated to
improve the binding free energy by about 4-6kJ mol ~ !, while introducing a methyl group in the same location in
structure 7, yielding 8, reduces the affinity by 14k] mol ~'. It can be expected that three-dimensional quantitative
structure—activity relationship (3D-QSAR) methods that do not take the protein structure explicitly into account will
have a hard time predicting such nonadditive behaviour. By overlaying the protein-ligand conformation that contributes
most to the free energy of binding for compounds 4 and 8 (Figure 8), a structural explanation can be given. In
compound 8 (in green), all soft atoms in the reference compound are real atoms, forcing an unfavorable interaction of
the methyl group with a cysteine (in orange) and leading to an increased binding free energy. For compound 4 (in red),
however, two soft atoms in the reference state are not there in the real compound. In this case, the most favorable
conformation is one in which the soft atoms show considerable overlap with an Arg side chain (in blue), allowing the
methyl group to shift away from the cysteine and fit snugly into a niche in the binding site, reducing the binding free
energy as compared to compound 3.

For rational drug design purposes it is not only important to predict accurately relative binding affinities, but
also to understand why one compound interacts more favorably with a receptor or solvent than another compound. In
the example described here, we have come to a detailed understanding of the subtle differences between
different compounds, and of the details that could be used in the development of novel ligands interacting with the
receptor.

42554 Drug Design

So far, the example that we have described has been mainly involved with the interpretation of the structure and
dynamics of ligand—protein complexes and the reproduction of experimental binding free energies. The model of the
reference compound in Figure S has also been used to rationally design a new compound binding to the ligand-binding
domain of the estrogen receptor. Experimentally, accurate screening of estrogenic activity in, e.g., environmental
samples can be performed using the phytoestrogen coumestrol.!?® This fluorescent compound has the remarkable
property that its fluorescence is increased when bound to the estrogen receptor, allowing for a compertitive screening of
other compounds driving coumestrol away from the binding site, which can be observed directly as a reduction of the
fluorescence. For practical purposes, there was a demand for additional fluorescent compourids with a relatively high
affinity to the estrogen receptor, but preferably fluorescing at slightly different wavelengths.
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Figure 8 The most contributing configuration of the reference compound for the case when the real compound is compound
4 (in red) and for the case when the real compound is compound 8 (in green) are drawn. In dark blue Leu347 and Thr348
are indicated that show overlap with the soft atoms in the red structure (transparent spheres), allowing it to shift its methyl
group away from Met389 (in orange). Protein backbone in cyan. Interacting residues Giu353, Arg394, and His524 in stick
represeritation (compare Figure 4).

Based on the fact that coumarines are known to be highly fluorescent and using the knowledge chat was obtained in
the examples described above, compound 10 in Figure 6 was proposed. Using the estimated free energy of binding
of the reference compound of — 57kl mol ™!, the binding free energy for compound 10 was predicted to be
- 49.0k) mol” . The compound was then synthesized'?” and subsequently tested to vield an experimental binding
affinity of —44k] mol™", only 5k] mol ™' from the predicted value. Subsequent experimental analysis revealed that
the Huorescence of this compound is also increased upon binding to the protein.

Even though the compound that was designed in this example was not designed as a potential drug, but rather for
analvtical purposes, it is clear that accurate free energies of binding can be predicted from molecular dvnamics
simulations. It is also interesting to note that the predicting strength of the method described here does not depend on
training a model to known data. Even without the estimated free energy of binding of the reference compound,
compound 10 would have been predicted to bind comparably to compound 6. Moreover, because the protein
environment is taken into account explicitly, the method can be used to accurately predict binding affinities of
compounds with a more hvdrophobic character (compounds 1-8) as well as for compounds that have a more hvdrophilic
scaffold (compounds 9, 10).

Overall, these examples show that the one-step perturbation method is an accurare and efficient means to predict
the free energies of binding for a series of compounds. The protein environment is taken into account explicitly
allowing for a detailed structural explanation of calculated differences between compounds. Other than the parameters
that go into a (relatively standard) force field, no empirical parameters are required and a statistically sound prediction
of the binding athinity is obtained.

4.25.6 Conclusions

This chaprer has briefly described methods that can be used to perform molecular dynamics simulations of
biomolecular systems. For drug design purposes. this will mainly be receptor-hgand complexes. In addition, we have
described methods to calculate the fice energics of binding on a sound statistical mechanicat basis. From the examples
in Secrion 4.25.5, it should have become clear how these methods can be applied in rational drug design.

First, simulations of protein-ligand complexes give insight in the structure and dynamics of the ligand when bound
to the protein. A detailed analvsis of the protein-ligand interactions reveals the relative importance of different
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interaction sites and allows us to predict the required functional groups in the ligand. From the dynamics of the
complex and the average shape of the binding site, possible sites of modification to known ligands can be suggested.

Second, we have shown that molecular dynamics simulations can be used to calculate (relative) binding affinities of
a series of compounds with reasonable accuracy. The methods described in Sections 4.25.4.3—4.25.4.8 have in common
that no experimental data are required to predict the binding affinities, other than the parameters from a common
biomolecular force field. With an average absolute error smaller than 457 (~2.5k] mol ™) the example that was
described shows that such a force field can describe the protein-ligand interactions quite accurately.

Third. the big advantage of molecular dynamics simulation and in particular the one-step perturbation approach is
that an explanation of the structural basis of the calculated free energies can be obtained at an atomic level. Structural
details can be obtained that explain why one compound binds more tightly to the protein than another.

Fourth, the one-step perturbation methodology allows the calculation of tens of thousands'*® to hundreds of
11 of relative free energies for not too different ligands from only a handful of simulations.

Finally, we have shown how the knowledge of the protein and ligand structure and dynamics, an understanding of the
structural reasons behind ligand binding, and the machinery to calculate binding free energies can be used to rationally
propose novel compounds that will bind to the same target and to predict the binding affinity of such compounds.

millions

With current availability of computational power, molecular dynamics simulations of protein-ligand complexes have
become feasible. The methods described offer insight in structure and dynamics at a resolution often not accessible
experimentally and the advantages of taking the protein environment of ligands into account will be evident from the
results presented in this chapter.
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