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1 Introduction

With the continuing increase of the power of computers, the past decades have seen a rapid
increase in the number, performance and accuracy of theoretical computational methods in
chemistry (van Gunsteren et al., 1989 ff, Lipkowitz & Boyd, 1990 ff). One can distinguish three
major classes of methods for the theoretical study of molecular properties, listed in order of de-
creasing computational expenses: (i) ab initio molecular-orbital methods (Hehre et al., 1986),
(ii) semi-empirical molecular-orbital methods (Zerner, 1991), and (iii) empirical classical force-
field methods. Since the available computing resources are most often the true limiting factor
to numerical calculations, it has become clear that there is no universal method able to solve
all possible problems, but that one should rather select the method that is the most suitable to
a problem of interest. The properties of the observable(s) and system under consideration that
will, together with the available computing power, largely determine which type of method can
be used are (van Gunsteren & Berendsen, 1990): (i) the required system size, (ii) the required
volume of conformational space that has to be searched or sampled (in terms of dynamics:
the required time-scale), (iii) the required resolution in terms of particles (determined by the
smallest entity, subatomic particle, atom, or group of atoms, treated explicitly in the model),
and (iv) the required energetical accuracy of the interaction function. These requirements
may be incompatible, in which case the observable cannot be computed adequately with the
currently available computer resources (van Gunsteren et al., 1995b). When requirements (i)
and (ii) are in conflict with requirement (iii), this conflict may be resolved by the design of
hierarchical or hybrid models, where only the relevant degrees of freedom are treated with a
more expensive, higher resolution method. This is often done, for example, in the study of
acid- or base-catalysed, organic or enzymatic reactions in the bulk phase (Warshel, 1991, Field,
1993, Whitnell & Wilson, 1993, Liu et al., 1996a).

Molecular-orbital methods are well suited for the study of small molecules or small clusters
of molecules (supermolecule) in vacuum (Keith & Frisch, 1994), or within an averaged solvent
environment (Angién, 1992, Cramer & Truhlar, 1992, 1994, Tomasi & Persico, 1994, Miiller-
Plathe & van Gunsteren, 1994), and give access to properties such as equilibrium geometries,
vibrational frequencies, heats of formation, relative energies of conformers and isomerisation
barriers. These problems are also addressed with an increasing accuracy by empirical methods
(Bowen & Allinger, 1991, Dinur & Hagler, 1991, Maple et al., 1994a,b). Due to the size of
the problem and volume of accessible conformational space, simulation of organic molecules or
macromolecules in the condensed phase is the domain of atom-based empirical classical force
fields (van Gunsteren & Berendsen, 1990). Long time-scale (or long relaxation time) problems
involving large systems, such as protein folding or de novo protein design, can currently be
addressed only by residue-based force fields (Gerber, 1992, Jones, 1994). Finding an accu-
rate description of the interaction at this low particle resolution (i. e. a sufficient energetical
resolution) is, however, a major difficulty.

Empirical classical force fields are based on a generalization of the Born-Oppenheimer
approximation, that is, on an averaging of the quantum mechanical Hamiltonian over implicit
degrees of freedom (electronic and possibly also of individual atoms) to obtain an analytical
interaction function depending solely on the explicit degrees of freedom of the model. This
averaging process occurs at three levels:

A. Averaging over the implicit degrees of freedom,

B. Averaging of a force-field term over the different chemical environments,



C.

Averaging of a force-field term corresponding to an internal coordinate over the other
force-field terms depending on the same coordinate.

Choosing the explicitly handled degrees of freedom and the interaction function are the
two first steps in an empirical force field calculation. The third is the choice of a method to
sample the conformational space (van Gunsteren et al., 1995a). This choice will also depend
on the information required to compute the observable(s) of interest, namely:

A.

Structural information:

Possible choices are systematic-search (for small size problems only), energy minimization
(EM) to a local minimum, and enhanced search methods such as genetic algorithms,
simulated annealing, use of a soft-core potential (Beutler et al., 1994), four-dimensional
search (van Schaik et al., 1993, Beutler & van Gunsteren, 1994) or the local-elevation
method (Huber et al., 1994) in molecular simulation.

Structural and thermodynamic information:

Methods of choice are Monte-Carlo (MC) sampling (Binder, 1992, Frenkel, 1993) or the
dynamical simulation methods mentioned below.

. Structural, thermodynamic and dynamical information:

In this case, equations of motion which explicitly contain time are required, such as the
Schrodinger, Newton, Lagrange or Langevin equations of motion. Possible techniques
are classical (van Gunsteren, 1993) or quantum (Field, 1993) molecular dynamics (MD)
or stochastic dynamics (SD) simulations.

The present text will mainly concentrate on the choice of the explicit degrees of freedom
to be included in the model, and the functional representation of the interaction function in
atom and united-atom based force fields.

2 Choice of the explicit degrees of freedom

The choice of an elementary unit (i. e. the particle that will have no explicit internal degrees of
freedom) is the first step in the design of an empirical classical force field. Possible alternatives
for the elementary unit and explicitly treated degrees of freedom, together with the corre-
sponding type of interaction function, are summarized in Table I. This choice will determine
or strongly influence (van Gunsteren & Berendsen, 1990, van Gunsteren & Mark, 1992, van
Gunsteren et al., 1995b):

A. The number of degrees of freedom that will have to be handled explicitly for describing

B.

a specific molecular system, and thus the computational effort.

The amount of conformational space that can be searched (or in terms of molecular
dynamics, the reachable time-scale). Because available computing power is most often
a limiting factor, for a system of a given size, the number of possible evaluations of the
potential energy function will rapidly decrease with the number of explicit degrees of
freedom.



C. The maximum resolution, in terms of particles (e. g. subatomic particles, atoms, group of
atoms, or molecules) and processes (e. g. chemical reactions, conformational changes, ... )
that can be achieved by the force field.

D. The type of functions that are likely to describe the interaction between elementary units
in an adequate manner, that is, with a reasonable energetical accuracy.

E. The type of observables the force field may be able to describe correctly, and those
which will necessarily stay inaccessible. Accessible observables will be those for which
the extent of searchable conformational space (B), the force field resolution in terms of
particles (C), and the force field accuracy (D) are sufficient.

Current developments in empirical classical force fields mainly follow five basic lines in
terms of degrees of freedom (Bowen & Allinger, 1991, Dinur & Hagler, 1991, Gelin, 1993,
Whitnell & Wilson, 1993, van Gunsteren et al., 1994, Jones, 1994), which will be described
in subsections 2.1  2.5. Note that in 2.3 2.5, the number of explicit degrees of freedom is
reduced essentially by decreasing the force field resolution in terms of particles. An alternative
way to reduce the size of the conformational space to be searched is to limit the dimensionality
or to discretize the coordinates (lattice methods, see e. g. Binder, 1992). These methods will
not be discussed here.

2.1 Gas-phase force fields

The primary purpose of gas phase force fields is the accurate description of molecules in vac-
uum (Bowen & Allinger, 1991, Dinur & Hagler, 1991, Hagler & Ewig, 1994, Maple et al., 1988,
1994a.b, Hwang et al., 1994). These force fields may be used to either complete or replace
more expensive ab initio molecular orbital calculations (Maple et al., 1994a), or to predict ex-
perimental gas-phase properties such as equilibrium geometries, vibrational frequencies, heats
of formation, relative energies of conformers and energy barriers for isomerisation (Hwang et
al., 1994). Rapid progress in the design of such force fields is made possible by (i) the ab-
sence of intermolecular forces, (ii) the increasing amount and reliability of data from ab initio
molecular-orbital calculations and (iii) the use of systematic and relatively inexpensive pro-
cedures for parameter calibration using both theoretical and experimental data. These force
fields, sometimes called class II force fields (Maple et al., 1994a,b), are usually characterized
by a detailed description of covalent degrees of freedom, involving anharmonic (non-quadratic)
potential energy terms and terms that couple the internal coordinates (non-diagonal energy
terms). Typical examples are the force fields CFF (Lifson & Warshel, 1968, Warshel & Lif-
son, 1970, Lifson & Stern, 1981) and a recently modified version (Engelsen et al., 1995a,b),
CVFF (Hagler et al., 1979a—c, Lifson et al., 1979), EFF93 (Dillen, 1995a,b), MM2 (Allinger,
1977, Bowen & Allinger, 1991), MM3 (Allinger et al., 1989, Lii & Allinger, 1989a,b, Bowen &
Allinger, 1991) and QMFF/CFF93 (Maple et al., 1994a,b, Hwang et al., 1994).

The term gas-phase force field does not mean that such force fields cannot be extended for
applications in condensed phase simulations. Experimental information on crystal structures
is sometimes used in the parametrization procedure (Warshel & Lifson, 1970, Dillen, 1995b,
Engelsen, 1995b). For real applications in liquid phase problems, however, these force fields
will suffer from the same difficulties in parametrization as condensed-phase force fields (section
2.2), and whether the significantly improved accuracy gained in the gas phase by inclusion



of anharmonic and off-diagonal terms will result in a significant increase of accuracy in the
simulated condensed-phase properties is still matter of discussion.

2.2 Condensed-phase force fields

The primary purpose of condensed-phase force fields is the accurate description of liquids,
solutions of organic compounds or macromolecules (Allen & Tildesley, 1987, Brooks III et al.,
1988, McCammon & Harvey, 1987, van Gunsteren & Berendsen, 1990) and crystals. Progress in
the development of such force fields is slow, since (i) the dominant forces in the condensed phase
are intermolecular forces which are not easily described and parametrized adequately, (ii) the
relevance of data from ab initio molecular orbital calculations in vacuum (even when reaction-
field corrections are applied) is limited, and the parametrization has to rely mostly on a small
amount of experimental data concerning the condensed phase, and (iii) the design of systematic
optimization procedures is in general not possible. One major reason for this impossibility is
that the estimation of observables to be compared to experimental results generally requires a
large number of evaluations of the potential energy function, and is therefore computationally
expensive. In these force fields, the main effort is aimed at the description of non-bonded forces
and torsional potential energy terms. Potential energy terms involving other covalent internal
coordinates are often either quadratic-diagonal (so-called class I force field) or simply zeroed
by the use of constraints. Typical examples are the force fields AMBER (Weiner & Kollman,
1981, Weiner et al., 1984, 1986, Pearlman et al., 1995), CHARMM (Brooks et al., 1983, Smith
& Karplus, 1992, Nilsson & Karplus, 1986, MacKerell Jr. et al., 1995), CHARMm/QUANTA
(Momany & Rone, 1992), DREIDING (Mayo et al., 1990), ECEPP/3 (Némethy et al., 1992),
ENCAD (Levitt, 1983a,b, Levitt et al., 1995), EREF (Levitt, 1974), GROMOS (van Gunsteren
& Berendsen, 1987), MAB (Gerber & Miiller, 1995), OPLS(Jorgensen & Tirado-Rives, 1988),
Tripos (Clark et al., 1989), UFF (Rappé et al., 1992) and YETI (Vedani, 1988).

2.3 Mean-solvent force fields

The purpose of a mean-solvent force field is the description of molecules in solution, but without
an explicit treatment of the solvent degrees of freedom (van Gunsteren et al., 1994). Although
an accurate description of the structure, mobility, dynamics and energetics of molecules in
solution generally requires an explicit treatment of the solvent, the omission of all or almost all
solvent degrees of freedom dramatically reduces the computational expenses, e. g. by a factor
10 50 for biomolecules in solution. The explicit influence of the solvent is approximated
here by its mean effect, and possibly also the effect of its mean fluctuations, as in stochastic
dynamics (Yun-Yu et al., 1988, van Gunsteren, 1993). The main implicit influences of solvent,
i. e. hydrophobic or structural effect, dielectric screening, random fluctuations and viscous
drag, are mimicked by a modification of the interaction function (different functional form,
additional terms, see e. g. Fraternali & van Gunsteren, 1996) and of the equations of motion
(Langevin equation).

2.4 Low-resolution force fields

The purpose of low-resolution force fields is the study of large systems, while addressing long
time-scale phenomena, such as fold recognition in proteins, protein folding, de novo protein
design and drug design. With the currently available computing power, these problems are
difficult to address, using force fields at atomic resolution (Hiinenberger et al., 1995a,b, van



Gunsteren et al., 1995b). Force fields at the amino-acid residue level are being developed for
peptides and proteins (Gerber, 1992, Jones, 1994, Ulrich et al., 1997). The main difficulty is
to find an adequate expression for the interaction between residues that provides a sufficient
energetical resolution to discriminate correct from incorrect structures. Once a functional form
is selected, the interaction function parameters are usually calibrated via a statistical analysis
of native protein structures. The effects of solvent are normally treated by a mean force term
(section 2.3). A correct description of the dynamics is usually not expected from such models.

2.5 Hybrid force fields

A whole variety of models include the combination of a treatment of a few degrees of freedom at
a high particle resolution and a treatment of the others at a lower resolution. For instance, the
first or first few hydration shells of a macromolecule may be included explicitly in a simulation,
the bulk solvent being modelled through a mean force (section 2.3). Another typical example
is the simulation of chemical, or acid- or base-catalyzed reactions, in solution or in enzymes
(Warshel, 1991, Field, 1993, Whitnell & Wilson, 1993, Liu et al., 1994, 1996a,b). Clearly, a
quantum mechanical description of the electrons or the protons is required. However, due to
the computational costs, such a treatment cannot be applied to the full system under study,
and only a few relevant degrees of freedom can be treated in this way. Finding the proper
interface between the different degrees of particle resolution in such hybrid models is here the
main difficulty.

3 Force field terms

3.1 Expression of the classical Hamiltonian

As in the quantum description of a molecular system, the classical Hamiltonian (total energy
of the system) depends simultaneously on the coordinates and the momenta of all particles in
the system. In a similar manner as in Hartree-Fock calculations, where the quantum mechan-
ical Hamiltonian is approximated by a sum of one and two electron operators, the classical
Hamiltonian can be approximated by a sum of n-body terms

Hatass ({0:.53) = X2 (VK@) +O V@) + 33 PV, d) +

i j>i
D> VG Gy @)+ (1)

i j>ik>j
where i, j, k, ... are indices running over the N particles constituting the system, or a subset of

these, ¢; and p; are the coordinate and momentum vectors of particle i, and the (n) superscripts
indicate the order of the terms. The three (single or multiple) sums in Equation (1) correspond
to the first three n-body terms of a force-field 4. e. n = 1,2,3. The principal terms that are
used in current force fields, either with a physical or a non-physical (i. e. ad hoc, to perturb
the system or impose restraints derived from experimental information) meaning, are listed
in Table II. The computational effort for calculating a n-body interaction term is either (i) of
the order O(M), M being the length of a list of possible combinations of indices entering the

multiple sums of (1), if such a list is available, or (ii) of the order O (m), N being the

number of atoms in the system, if all combinations have to be calculated. Covalent interactions



are typically of type (i), whereas non-bonded interactions are of type (ii). For systems of a
reasonable size, N? will always be larger than M for any list of covalent interactions, and
the bulk of computer time will be used to calculate two-body non-bonded interactions. The
computation of Has, is thus essentially an O(N?) problem. Even for relatively small systems,
the inclusion of three-body non-bonded terms is extremely expensive (Curtiss & Jurgens, 1990,
Elrod & Saykally, 1994). On the other hand, the evaluation of a single N-body term is an
inexpensive problem. An example may be the radius of gyration interaction that can be used
to force protein unfolding in a molecular dynamics simulation (Hiinenberger et al., 1995a).

3.2 Bond-stretching term
3.2.1 Functional forms

When simulations are performed at room temperature, and when no chemical (bond breaking)
reaction is involved, bond lengths usually remain close to their equilibrium values. The bond
stretching contribution to the potential energy can then be approximated adequately by a
Taylor series (Hagler & Ewig, 1994)

Ey ({bi}; {67, @k, (S)kb,i}) = > [(Q)Rb,i(b? —bi)? + Oy i (0] — b;) + - } (2)
all bonds ¢

where b0 is the equilibrium bond length and (™, the force constant corresponding to the
term of power n. There is no first order term since the derivative of the potential energy
has to be zero when b = b°. For example, in the MM2 force-field (Allinger, 1977, Bowen &
Allinger, 1991), terms are retained till the third (cubic) power. This has the disadvantage
that the potential becomes negative for high internuclear separation and thus, an inadequate
coordinate choice may cause bond dissociation. A quartic expansion is used in the MM3
(Allinger et al., 1989, Bowen & Allinger, 1991) and CFF93 (Maple et al., 1994a,b, Hwang et
al., 1994) force fields, which fixes this problem. Although the inclusion of anharmonic terms
(n > 2) clearly improves the description of vibrational properties of molecules in the gas phase,
it may not do so in other applications. When oscillations with large amplitudes are considered,
when the effect of non-bonded strain on a bond length and stretching frequency are of interest,
or when the breaking of a bond is required, other potential forms can be used. For example,
as in the CVFF force field (Hagler et al., 1979a—c, Lifson et al., 1979), a Morse-type function
may be used

Eorse ({bi}; {b?,Di,ai}) = Z D; [eﬂi(b?*bi) - 1}2 (3)

all bonds i

where D is the well depth, b the equilibrium bond length and « a unitless parameter deter-
mining the width of the well. This equation already encompasses anharmonicities and provides
a better description than a limited Taylor expansion around and away from the equilibrium
bond length. Other possible three-parameter functions (Zavitsas et al., 1989, Ermler & Hsieh,
1990) are the Durham, Linnett, Lippincott, Rydberg, Simons-Parr-Finlan and Varshni func-
tions. Most of these have been calculated a priori or tailored for diatomic molecules, but at
least some may be applied successfully to individual bonds in polyatomic molecules (Brown
& Truhlar, 1985). It has also been proposed that Taylor expansions in (b° — b)~! may be
more adequate than expansions in (b° — b) for fitting bond stretching energies from ab ini-
tio calculations, and a good correspondence has been observed over a wide range of lengths



(Dinur & Hagler, 1994). The use of such dissociative functions for modelling a bond breaking
process remains, however, limited to specific systems and chemical reactions because (i) they
are difficult to parametrize, and (ii) in the general case, the effect of bond breaking is not only
local to a single bond and implies corresponding changes in the parameters of other covalent
and non-bonded interaction terms.

In a large number of applications (e. . AMBER, CHARMM, GROMOS,; ...) and especially
for the simulation of large molecules or the simulation of systems in explicit solvent, the
detailed formalisms mentioned above are not used. A Taylor expansion limited to the second
order (harmonic) is assumed to be sufficient since (i) the high bond-stretching and bond-angle
bending frequencies are weakly coupled to the rest of the system and (ii) the low frequency
motions (conformational changes, solvent relaxation) largely determine the thermodynamic
properties of the system. The evaluation of the bond-stretching interaction may be made less
expensive by using the quartic expression

By({oidi (0. k}) = X ki [0~ )] (4)
all bonds i

which avoids a square root operation in the calculation of the force and energy. In molecular
dynamics simulations, since a proper integration of the (uninteresting) high-frequency bond
stretching vibrations requires time steps of the order of 0.5 fs, a further (and common) time-
saving technique is to constrain the bonds to their equilibrium lengths, which allows for the use
of time-steps 4 5 times longer without substantially affecting the dynamics (van Gunsteren &
Karplus, 1982). It has been shown, however, that the bond angles should not be constrained
simultaneously.

3.2.2 Combination rules

Combination rules for covalent bond interaction parameters are usually given in the form of a
table as a function of the atom types of the atoms that define the bond. An interesting excep-
tion is the DREIDING force-field (Mayo et al., 1990), which uses an arithmetic combination
rule

) (a,b) = R%(a) + R°(b) — 0.01 A (5)

where a and b are the atom types of atoms forming bond 4, and R°(a), R(b) are the covalent
radii corresponding to these atom types. The (harmonic) bond-stretching force constant is
determined solely by the bond order.

3.3 Bond-angle bending term

3.3.1 Functional forms

Most of the considerations applying to bond stretching terms also apply here. For small
deformations around the equilibrium bond angle, a Taylor expansion can be used

Ey (103 109, Phos Dhos ) = 3 [Phoa(9) = 907 + Ok (09 — 9% + -]
all angles ¢ (6)

where 9° is the equilibrium angle and Mk, the force constant corresponding to the term of
power n. For example, an expansion up to the fourth power is used in CFF93 (Maple et al.,



1994a.b, Hwang et al., 1994), the second and sixth power terms are retained in MM2 (Allinger,
1977, Bowen & Allinger, 1991), and MM3 (Allinger et al., 1989, Bowen & Allinger, 1991) uses
a full expansion up to the sixth power. An alternative potential energy term which is used in
some force fields, such as the CHARMM all-atom force field for DNA (MacKerell Jr. et al.,
1995) is the Urey-Bradley energy term

Ey ({191‘}; {99, ki, Dkqs, (2)kd,i}) =

> [kﬁ,i(ﬂ? —93)? 4+ Wy a(d? — di) + Phga(d? — dz’)Q] (7)

all angles i

where d; is the 1,3 distance between atoms forming the extremity of the angle, d? its equilibrium
value and Mk, the force constant corresponding to the term of power n. It has been shown
that if F is defined to within a constant and d? is replaced by an effective distance, the linear
term in Equation (7) can be omitted without loss of information (Pettitt & Karplus, 1985).
The Urey-Bradley function already includes some anharmonicity as well as a coupling between
the angle and the constituting bonds.

Again, in a number of applications (e. 9. AMBER, CHARMM, GROMOS, ...) dealing
with large molecules or molecules in the bulk phase, only the harmonic term is retained in
Equation (6). A harmonic function in the angle cosine is also sometimes used (Mayo et al.,
1990) for computational efficiency

Ey({0:3: {00, koi}) = Y hoilcosd) — cosd)? (8)

all angles

3.3.2 Combination rules

Combination rules for bond angle bending parameters are usually given in the form of a table
as a function of the atom types of the atoms that define the angle. An algebraic empirical
combining rule for estimating harmonic angle bending from ab initio results or spectroscopic
force fields has however been proposed (Halgren, 1990)

hoila,b.c) = K Z(a) C(0) Z(0) (00 +8)  (9)  exp (2%) (9)

where a, b and ¢ are the atom types of atoms forming angle 7, K a constant, Z(a), C(b) and
Z(c) parameters depending solely on the atom types, and 9%, b® equilibrium parameters.

3.4 Torsional dihedral angle term
3.4.1 Functional forms

If small oscillations around an equilibrium conformation are considered, the torsional potential
energy term can, just as the bond stretching and bond angle bending terms, be expanded in a
Taylor series. In most applications, however, when the relative energies of different conformers
and the corresponding isomerisation barriers are of interest, or when conformational transitions
are studied by molecular dynamics, Taylor series cannot be used. In these cases, the torsional



angle potential energy term needs to be 27-periodic and symmetric at 0 and 7, and can be
expressed in terms of a cosine series

Ew ({Wz} {(1) kw,ia (2)1%,1‘7 (3)1%,1‘7 - }) =

Z [(1)7‘7@,2'(1 —cos ;) + (Q)kw(l — cos2yp;) + (3)k¢,,z~(1 —cos3p;) + - ] (10)
dihedrals 7

where Mk is the force constant corresponding to the term of order n. For example, CFF93
(Maple et al., 1994a,b, Hwang et al., 1994) and MM3 (Allinger et al., 1989, Bowen & Allinger,
1991) use the first three terms in the expansion. The terms (of order n) are sometimes formu-
lated in a slightly different way (Brooks et al., 1983, van Gunsteren & Berendsen, 1987, 1990),
such as

(™) kyil — (")kw- COS N;

or (")kfm (1 + cos(np; — (”)51')) with (")k'%i >0 and (Mg =07 (11)

where (M § in the second formulation is a phase shift, which plays the same role as the sign of
(")k@ in the first formulation. Since the slope of the potential has to vanish at 0 and «, the only
possible values of (M§ are 0 and «. If (")kw is negative or (§; is 0, the term has a maximum
for p = 0. If (")kw is positive or (™§; is , it has a minimum for ¢ = 0. These two latter
formulations ensure that the potential is zero at the minimum of the curve, which may not be
true for Equation (10). The number of terms retained in the cosine expansion varies from one
force field to another and from one dihedral type to another. One should also note that the
summation in Equation (10) need not include all dihedral angles, but may comprise only one
or two particular dihedral angles out of the one to nine dihedrals that can be defined around a
central covalent bond between two atoms having up to four covalently bound neighbour atoms.

3.4.2 Combination rules

Combination rules for torsional potential parameters are usually given in the form of a table
as a function of the atom types of the four atoms, or of the two central atoms, that define the
torsional angle.

3.5 Out-of-plane coordinate distortion term
3.5.1 Functional forms

In principle, the valence terms of a force field could be entirely defined in terms of bond lengths,
bond angles and torsional dihedrals, as is for instance the case in the alkane CFF93 force field
(Maple et al., 1994a,b, Hwang et al., 1994). There are however two reasons for introducing out-
of-plane coordinate potential energy terms: (i) all the covalent internal coordinates mentioned
till now can be expressed in terms of scalar products of vectors and there is thus no term to
enforce chirality (which is just determined by the coordinates and sufficiently high isomerisation
barriers). Enforcing the geometry around a site by using six bond angles (tetrahedral case) or
three bond angles (planar case) without including cross-terms leads to an unrealistically stiff
energy function (e. g. around a carbonyl carbon, the function tends to become quartic for out
of plane bending) and (ii) when tetrahedral united atom carbons, CHR3, are used, one of the

10



hydrogen is not explicitly present for the definition of an angle, but pyramidal inversion need
be avoided.

The out-of-plane coordinate energy term should describe how difficult it is to force a non-
planar geometry (trigonal site) or a non-tetrahedral geometry (tetracoordinated site or CHR3
united atom). The functional form is most often chosen to be harmonic

Eﬁ({&}?{&k&i}): Yo ki€ — &) (12)

out-of-plane
coordinates i

The definition of the out-of-plane coordinate is not unique (Dinur & Hagler, 1991). It can
either be expressed in terms of (i) an improper dihedral angle, i. e. the dihedral angle defined
by a bond from the central atom to a peripheral atom, the vector from this peripheral atom to
a second peripheral atom, and the vector from this second peripheral atom to a third peripheral
atom, (ii) the height of the central atom above the plane defined by the three peripheral ones
and (iii) the angle between one bond to the central atom and the plane defined by the central
atom and the two peripheral atoms not involved in this bond. The summation in Equation
(12) runs over a specified set of out-of-plane coordinates.

3.5.2 Combination rules

Combination rules for out-of-plane coordinate potential energy parameters are usually given
in the form of a table as a function of the atom types of the four atoms, or of the two outer
atoms, that define the coordinate.

3.6 Valence coordinates cross terms
3.6.1 Functional forms

It has been shown that the inclusion of valence coordinates coupling terms (off-diagonal terms)
significantly improves the capacity of an empirical function to reproduce trends in the energy,
and its first and second derivatives with respect to the atomic coordinates, from ab initio
molecular orbital calculations (Halgren, 1990, Maple et al., 1994a) and trends from experi-
mental data in vacuum (Hwang et al., 1994). The MM2 (Allinger, 1977, Bowen & Allinger,
1991) and CVFF (Hagler et al., 1979a-c, Lifson et al., 1979) force fields contain some of these
terms, whereas the MM3 (Allinger et al., 1989, Bowen & Allinger, 1991) and CFF93 (Maple
et al., 1994a) force fields use them in a systematic way. The commonly included off-diagonal
terms are listed below (see also Table II). Interpretation of the terms in terms of force constants
is given here with respect to the CFF93 force field for alkanes.

A. Bond - bond coupling (bonds j sharing one common atom with bond )

(<6)
Ebb’ ({bl, bj}; {b?, bg, kbb’,ij}) = Z Z kbb’,ij(b? - bl)(bg - b]) (13)

bonds ¢ bonds j > i

This term is present in CVFF and CFF93. Since k is positive, this term favours asym-
metric bond stretching around a given site.
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. Bond-angle — bond coupling (two bonds j involved in the angle i)

(2)
Eﬂb({ﬁi,bj};{ﬁ?,bg,kﬂb,ij}) = > ) ki (99 = 9:) (6] — by) (14)

angles 4 bonds j

This term is present in CVFF, CFF93, MM2 and MM3. It is used to reproduce vibra-
tional frequencies and the bond-length effects in strained molecules where a bond angle
is stretched or compressed. Since k is positive, bond lengthening is favoured when the
bond angle is reduced.

. Bond-angle — bond-angle coupling (angles j sharing one common bond with angle 7)

(<10)
Eygr ({ﬁiaﬁj};{ﬁ?aﬁgakﬂﬂ’,ij}) = > > kw09 —0) (9] —9;)  (15)

angles ¢ angles j

This term is present in CVFF, CFF93 and MM3. It is used to reproduce vibrational
frequencies for coupled bending modes. k may be positive or negative.

. Torsional-angle  bond coupling (central bond or two peripheral bonds j involved in
torsion 1)

Ecpb ({‘Pia bj}:, {bg, (1)knpb,ia (Q)knpb,ia (3)knpb,ia - }) =

(1) or (2)
Z Z (b;] — b]) [(l)kwbﬂ‘ Cos @; + (2) k(pb,i Ccos 2(,02' + (3)knpb,i CcoS 3(,02 + - }
dihedrals ¢ bonds j (16)

This term is present in CFF93 up to order three and MM3 (torsion-central bond coupling
only). It is used for reproducing the structures of molecules in which different conformers
exhibit significant differences in bond lengths and bond angles. Since (1)/{@ is positive for
the coupling to the central bond, a lenghtening of this bond is favoured in the eclipsed
conformations. For peripheral bonds, k is negative and small.

. Torsional-angle bond-angle coupling (two angles j involved in torsion 7)
Ep ({‘Pi, 9535407, Wk i, Dhiga i, Vg, .. }> =
(2)
Z Z (192 - 19]-) [(l)kw’i cos p; + (Q)k(pﬂ’i cos 2p; + (3)k(pg’¢ cos3p; + -+ ]
dihedrals i angles j (17)

This term is present in CFF93 up to order three and plays a similar role as the term
under D.

. Torsional-angle bond-angle bond-angle coupling (two angles j and k involved in the
torsion 1)

E(pﬂﬂ’({()oiﬂﬁjﬂﬁk};{ﬁgaﬁg’k(pﬁﬁlyi}> = Z ktpﬁﬁ',’i(ﬁg fﬁ])(ﬁg 719]6) COS ©;
dihedrals ¢ (18)

This term is present in CVFF and CFF93. Since k is negative, an increase in the bond
angles is favoured in the eclipsed conformations.

1 ¢y



Note that the inclusion of 1,4 non-bonded interactions (atoms separated by three bonds)
implicitly includes terms of type C — F. The force-constants in Equations (13) — (18) are ob-
tained by fitting to the energy and its first and second derivative respective to the coordinates,
calculated by ab initio techniques using a set of distorted structures of the molecule (Maple
et al., 1994a). They can later be scaled using a limited number of parameters in order to
reproduce experimental data, the assumption being that the errors made in the ab initio cal-
culation are systematic (Hwang et al., 1994). Such type of calculations has only currently been
performed systematically for alkanes.

3.7 Van der Waals interaction
3.7.1 Functional form

It is usually assumed that the non-electrostatic component of the interaction between non-
bonded atoms can be described in the same way as the interaction between rare gas atoms,
i. e. a long-range weak attraction due to induced-dipole induced-dipole (dispersion) interaction
and a short-range steep repulsion due to the overlap of the electron clouds. This type of inter-
action is given the generic name of van der Waals interaction. Although the features mentioned
above are generally accepted, the proper functional description of van der Waals interactions
is, however, still matter of discussion (Halgren, 1992, Hart & Rappe, 1992a,b). Most current
force fields use a 12-6 van der Waals function (Lennard-Jones function), where the steep re-
pulsion is described by a 1 /r dependence and the dispersion by a 1 /r dependence. Three
equivalent definitions can be found in the literature

E1276({7”z'j}§{012(i=j)706(i’j)}) -

T ey

i j>i ij ij

or  Fia_g ({Tz'j}; {Rpmin (i, ), 8(1}.7')}) =
Natoms Natoms (5.4 12 (5. 6

i i " "ij

or E1276({7”ij}?{U(i=j)’€(i’j)}) -

[ 7>1 Tij Tij

In Equation (19), Ry, is the distance at minimum energy, o the distance at zero energy
(0 < Rpin) and e the well depth at the minimum (with respect to infinite separation). These
three parameters keep their meaning even if the energy is not described by a 12-6 van der
Waals function. Since the experimental energy functions for rare gases follow a single reduced
form around the minimum (Kestin et al., 1984, Halgren, 1992), R, or o definitions and
combination rules are interchangeable to a large extent. In the case of a 12-6 van der Waals
function, the conversion between the definitions of Equation (19) is straightforward
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Ryin (i, ) = 6 /2012(2 7)
mln (Z’ )
6 |Crali,5)

76D = N o) 0

Cs (i, 5)
e(i,j) = 7401@ )

It has been suggested that a softer van der Waals interaction might perform better than a 12-6
form. For example, a 9-6 van der Waals interaction is used in CVFF (Hagler et al., 1979a—c,
Lifson et al., 1979) or CFF93 (Maple et al., 1994a)

By ({rij} {Bmin(i. ), 200, 5)} ) =
Zm Zm [ (Mfg(M)q (21)
R R ]

Another widely used function is the exp-6 function (Mayo et al., 1990), which reads

Eerp-6 ({Tij}§ {e(i, ), Rmin (4, 7), C(Z77)}) =

Natz.oms Ntfﬂs lﬁ exp <C(i’j) <1 - #M>> ~ed <#ZZ’])> 6] (22)

[ 3>

where ( is a dimensionless scaling parameter. Although all types of functions defined above
perform similarly close to the equilibrium distances, it has been suggested both using theoret-
ical arguments and comparison to ab initio results (Hart & Rapé, 1992a,b) that a Morse-type
function may perform better over a wider range of distances

Erorse ({Tij}; {5(ia.j)aRmzn (Z 7) (7' 7)})
Natoms Natoms

35S o 2t (1 )

i J>i min(’la])

— 2exp [a(z’,j) (1- #Z“))H (23)

where « is a dimensionless scaling parameter.
Finally, a buffered 14-7 energy function has also been proposed (Halgren, 1992)

Ebuf—n—m ({Tij}; 3, {6(i7 7)a Rpnin (ia 7)}) =

(1 4 6) Rynin (i, 7‘)]”’” l(lﬂ)R%H(' )
+5Rmm(2 7) +7Rmm( )

withn =14, m =7, § = 0.07 and v = 0.12, these parameters being obtained from a best
fit to rare gas experimental data. A correct description of van der Waals interactions over a
broad range of distances is essential for condensed phase simulation, since a broad spectrum
of interatomic distances will be present.

atams atoms

2. X ¢

7 >t

- 2] (24)
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3.7.2 Combination rules

Since the definition of N atom types implies the definition of !AN(N + 1) van der Waals
interaction parameter sets for atom pairs, most force-fields make use of combination rules which
depend on sets of N atomic parameters, which can be calibrated by studying the homonuclear
case (Waldmann & Hagler, 1993, Halgren, 1992). For Equation (19), (21)—(24), many types of
combination rules are found in the literature:

A.

. Arithmetic mean for RS,

Geometric means (van Gunsteren, 1987)

The following rules are equivalent for the case of a 12-6 van der Waals interaction (the
latter two for any van der Waals interaction)

06(' ) CG(Z ’l) Cﬁ(],j) and 012 \/012 ’l 7 Clg(j,j)
or Rmm = \/Rmm Z Z) Rmm(]a]) and €(Zuj) = 5(272) E(juj)
or U(i,j) = Vo(i,i) o(4,7) and  e(i,j) = Ve(1,4) €(4, 7) (25)

Geometric mean for ¢ and arithmetic mean for R,,;, or o (Lorentz-Berthelot mixing
rules)

The following rules are equivalent for the case of any n—m van der Waals interaction

Rmm(%?) = ;{Rmm( ) + Rmm(?a )} and 5(Za7) = €(i,i) 6(7a7)

or  o(ij) = 3[oli,i) +0(j.1)] and (i, j)

emNeGd)  (26)

: 6
in and geometric mean for eR, ;.

This combination rule has been proposed recently and tested for rare gases (Waldmann
& Hagler, 1993)

Bl ) = \/ HOURYMCE]

1
e(is) =gy VO DR 6:9) €5 ) B () (27)

min

. Cubic-mean rule for R,,;, and HHG mean for ¢

This combination rule has been proposed recently and tested for rare gases (Halgren,
1992), where the HHG mean is the harmonic mean of harmonic and geometric means

Rmm( I ) +Rmm( .7)3

Fonin (607 + Eonin (71 7)? (28)

(VG + Vel 7))

. Slater-Kirkwood combination
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The Slater-Kirkwood expression (van Gunsteren & Karplus, 1982, Brooks et al., 1983,
Halgren, 1992) is more than a combination rule, since it also allows the estimation of van
der Waals parameters from experiment

Ciali ) =% Co(i. ) (BG) + RG)) (30)

where K is a constant, «(i) is the polarizability of atom ¢, R(7) its van der Waals radius,
and N (7) its effective number of outer shell electrons.

Other combinations have been proposed, which involve additional parameters such as po-
larizability, ionization potentials or dispersion force coefficients. These are however not well
suited for general empirical force fields, since one would like to restrict the number of param-
eters involved.

3.8 Electrostatic interactions
3.8.1 Functional forms

The correct treatment of electrostatic interactions is an essential but difficult problem in the
design of empirical energy functions (Harvey, 1989, Davis & McCammon, 1990, van Gunsteren
& Berendsen, 1990, Berendsen, 1993, Smith & van Gunsteren, 1993). This is mainly due to
their long-range nature, which causes dependence on the system size and boundary conditions,
as well as high computational costs. In condensed-phase simulations, these high computational
costs, together with the use of periodic boundary conditions, require approximations, which will
unfortunately influence the properties of the simulated system. In most cases, the interaction
is defined in terms of a pairwise Coulomb interaction between point (atomic or virtual site)
partial charges, that is, by a monopole approximation. The effect of the polarizability of the
electron cloud is assumed to be included in the interaction between these point charges in an
average manner, and these charges are thus effective charges. Ideally, the interaction should
be calculated by scanning all charge pairs, i. e.

N N
L qigy
Ecz;({?”ij}; {Qin}) =>3 y— = (31)
— T ATEQE] Tij

i >t

where r;; is the distance between charges ¢ and j, g;q; the product of the charges, € the
permittivity of vacuum, e; the relative permittivity of the medium and N the number of
atoms in the system. Equation (30) is in principle exact, but practically directly applicable
only to vacuum simulations of small isolated molecules, with the aim of reproducing vacuum
properties. It cannot be used for:

A. Medium and large scale problems: since the computational expenses grow as N2,

B. Fixed boundary problems: if the system consists of a molecule, plus possibly some layers
of solvent, surrounded by vacuum, surface tension effects will distort its properties. In
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the absence of dielectric screening from outside the system, the electrostatic interaction
inside the system will be overestimated, and in the absence of van der Waals forces with
the outside, the surface of the boundary will tend to become minimal (spherical shape).
When explicit solvent molecules are present, evaporation may also occur.

. Periodic boundary problems: if the system consists of an infinite series of replicas of

a central cell (periodic boundary conditions, for crystal or solution simulations), the
number of pairs in Equation (30) is infinite.

A wealth of techniques have been designed to find approximate treatments which remedy
these problems, and try to find the best compromise between efficiency and accuracy. The
following list is non-exhaustive:

1.

Boundary corrections (point B)

The distortions induced at the interface to vacuum can be reduced by corrections which
attempt to mimic the effect of solvent outside the boundary (King & Warshel, 1989, Be-
glov & Roux, 1994, Essex & Jorgensen, 1995, Wang & Hermans, 1995): (i) short range
contacts, by addition of a soft-wall interaction or position restraining of the atoms in
the surface layer, (ii) electrostatic effects at the boundary, by addition of dipole orien-
tation interactions, and (iii) dynamical fluctuations, by the use of stochastic boundary
condition. These boundary corrections are difficult to calibrate and often have to be
reparametrized for each specific system considered.

. Redistribution and reduction of the charges (point B)

The dielectric screening effect of a virtual solvent outside the boundary can be in first
approximation, included by the use of a set of more distributed and reduced charges (van
Gunsteren & Berendsen, 1987). This method is very ad hoc.

. Distance dependent dielectric (point B)

The dielectric screening effect can also be mimicked by replacing €; in Equation (30) by
an effective dielectric constant e.g, proportional to the distance between charges, i. e.
€eff = M - Tjj, usually with n =1, 4 or 8 A1, In this approximation, the screening effect
is assumed proportional to the amount of bulk solvent between the charges, and thus, to
the distance. This method is also ad hoc and lacks physical meaning.

. Screening functions (point B)

The approach is similar to the previous one, but €; is replaced by eze”"7, where & is
the inverse Debye screening length. The choice of an adequate €.4 (constant or function

of r;;) is problematic and the application to heterogeneous systems is not satisfactory.

. Continuum methods (point B)

The system is assumed to be surrounded by a dielectric continuum of permittivity e
(Wang & Hermans, 1995). The influence of the charge distribution in the system on the
continuum outside the boundary, induces a reaction field potential inside the boundary.
When the shape of the boundary is highly symmetric, the interaction can be computed
analytically (Born, Onsager models). In other cases, it has to be computed numerically
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(series expansion of the reaction field, finite difference, finite elements or boundary ele-
ments methods). Treatment of particles near the boundary is the major problem of these
methods.

. Langevin dipoles (point B)

The solvent is modelled by a set of polarizable and rotatable dipoles on a grid, which
average orientation is described by a Langevin type equation (Russel & Warshel, 1985).
The model is relatively inexpensive and seems more realistic than a continuum approx-
imation. It is, however, difficult to parametrize, a proper description of the interface is
problematic, and the properties of the system may depend on the grid parameters.

. Lattice sums (point C)

These methods are based on an exact periodic treatment of the infinite system in simu-
lations using periodic boundary condition (Allen & Tildesley, 1987, Smith & van Gun-
steren, 1993, Fincham, 1994, Luty et al., 1995, Smith & Pettitt, 1995). The infinite sum
over all atoms and periodic images in Equation (30) can be rewritten as two finite sums
over lattice (real space) and reciprocal lattice (Fourier space) vectors, plus a constant self-
energy term, which can in principle be computed exactly. These methods are, however,
complicated to implement, sometimes computationally expensive and they may enforce
long-range correlations through periodicity. These are realistic in simulations of crystals,
but may give rise to artefacts in bulk-phase systems, although only under special circum-
stances (Figueirido et al., 1995, Luty & van Gunsteren, 1996). Lattice sum techniques
include Ewald summation, particle-particle particle mesh and related methods.

. Minimum image convention (point C)

The interaction is only calculated between charge ¢ of the central cell and the closest
periodic image of charge j. The number of pairs is then finite, but can become large, i. e.
O(N?). This convention is not much used, since all charges interacting with i belong to
a volume of the same shape as the unit cell, which induces anisotropy effects.

. Simple spherical cut-off (points A,B,C)

The long range correlation problems inherent to lattice sum methods (7) and the an-
isotropy problem inherent to the nearest image convention (8) can be reduced if the
Coulomb interaction is zeroed at a given distance between charges, the cut-off distance
R.. The sphere of radius R, (cut-off sphere) around a charge i has to be smaller than
the unit cell, so that only nearest images are selected inside the cut-off. This method
is simple to implement and allows for a significant reduction of the computational costs
for large systems, since the effort is roughly O(NR?), and R, can be much smaller than
the box volume for large systems. Although it is a good approximation for non-polar
systems, it may however produce serious problems for polar systems (Neumann, 1983,
Neumann et al., 1984), ionic systems (Brooks III et al., 1985, Brooks III, 1987, Madura
& Pettitt, 1988) or biomolecules in solution (Schreiber & Steinhauser, 1992a.,b,c), since
the long range Coulomb force often differs significantly from zero at the cut-off distance.
The main problems (Allen & Tildesley, 1987) are non-conservation of the energy for
a microcanonical simulation, heating effects at the cut-off due to a non-zero force and
structural, statistical and dielectric distortions over the whole range of intermolecular
distances. The following points 9.1 — 9.6 describe possible corrections to the simple
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spherical cut-off approximation, which attempt to minimize these distortions (Brooks III
et al., 1985, Loncharich & Brooks, 1989, Steinbach & Brooks, 1994).

9.1

9.2

9.3

9.4

9.5

Charge-group interaction

Charges are grouped in terms of chemically (or intuitively) based charge groups, ei-
ther neutral or bearing an integer (electronic) charge (e. g. carbonyl groups, amino
groups ...). The atom-based truncation is then replaced by a charge-group based
cutoff criterion (van Gunsteren & Berendsen, 1987,1990). For two neutral charge
groups I and J, the leading term in the electrostatic interaction takes a r;f depen-
dence, which reduces significantly the effects of truncation. They are, however, not
completely eliminated (Neumann, 1983, Neumann et al., 1984, Brooks III, 1987,
Madura & Pettitt, 1988). The inconvenience of the method is that it may require
a modification of the original charge distribution as obtained, for example, from
quantum-mechanical calculations.

Twin-range method

In this method, a second (long-range) cut-off Ry, is introduced. Interaction of charge
pairs with Rc < rj; < Ry are calculated every n time steps (n > 1, usually
~ 5-10, together with the pair list update) and assumed constant in-between (van
Gunsteren & Berendsen, 1990). If the high frequency fluctuations in the long range
forces are negligible, the effective cut-off is increased to Rj; without significant
additional computational costs. In a variant, the interaction between charge groups
at distances between R¢ and Rj, are approximated by a multipole expansion, e. g.
up to quadrupole interactions (Brooks et al., 1983)

Switching function

To avoid abrupt truncation of the interaction at the cut-off radius R¢, the Coulomb
interaction can be multiplied by a so-called switching function, SW (r;;, Rs, Rc)
with Rg < R¢, a continuous function with continuous derivative, which has the
value 1 if r;; < Rg and 0 if r;; > Rc (Brooks et al., 1983, Loncharich & Brooks,
1989). Energy conservation is improved, heating effects are reduced, but structural
artefacts are still observed.

Shifting function

Alternatively, the Coulomb interaction can be multiplied by a so-called shifting
function, SF(r;j, Rc), a continuous function with continuous derivative, which has
the value 1 at r;; = 0 and 0 if ;; > Rc (Brooks et al., 1983, Prevost et al., 1990).
The inconvenience of this method is that the interaction is changed over the whole
range of r;; distances from 0 to R¢.

Reaction field correction

The medium outside the spherical cut-off cavity may be approximated by a dielec-
tric continuum of relative dielectric permittivity equal to that of the bulk solvent, ey
(Barker & Watts, 1973, Hummer et al., 1992, Barker, 1994, Chipot et al., 1994a,b,
Wood, 1995). The influence of the charge distribution (limited to a dipolar term)
inside the cut-off on the continuum outside induces a reaction field potential in-
side the cut-off sphere. This additional interaction can be described as a pairwise
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interaction and added to the Coulomb term to give

Ecy+rF ({Tij}; {agiqj}, Rrr. 62) =

Natoms Natoms [

; Z qiq;

dreger

2
— re. 3 1
€2 €1 ;] N €2 (32)
rij 26 +e€ Rpp  2€2+ €1 Rgr

where Rpp is in principle equal to Rc. When €3 is large, both the energy and the
force vanish at the cut-off, and thus, this correction can be considered as a physically
based shifting function. It makes a considerable difference whether this additional
interaction is included during the simulation or as a correction afterwards (Daura
et al., 1996). This formalism can be extended to include the effect of non-zero
ionic strengths (Tironi et al., 1995). This treatment is a significant improvement to
straight truncation, but not entirely correct when applied to heterogeneous systems.
Its use might also require a force-field reparametrization (Smith & van Gunsteren,
1995).

9.6 Distance dependent dielectric

Since the approximation described under point (3) gives to the electrostatic energy a
7“;]2 dependence, and thus reduces truncation artefacts, it has also been used in con-
densed phase simulations under periodic boundary conditions. However there, the
solvent is explicitly present, which means a double-counting of dielectric screening
effects.

3.8.2 Combination rules

Formally, the Coulomb law has the form of a combination rule, since the magnitude of the
interaction is proportional to the product of the charges of the individual atoms. Some force
fields make further use of combination rules to determine the atomic point charges. In the
bond increment method (Maple et al., 1994a, Oie et al., 1981), the charge of an atom i is
calculated as

a= Y 0(ai) b)) (33)

first neigh-
bours j

where a(i) and b(j) are the atom types of 7 and j, respectively, and the function 0 satisfies
d(a,b) = —d(b,a). This has the advantage that a single bond parameter is required to evaluate
all charges, and that electroneutrality is always preserved.

3.9 Hydrogen-bonding term

An explicit hydrogen bonding interaction term is sometimes added to the already present non-
bonded interactions described above. Its purpose is to avoid too short hydrogen bonds due
to a strong electrostatic attraction, and to allow for a specific fine tuning of hydrogen-bond
distances and energies. In some force fields, the van der Waals 12-6 parameters for hydrogen-
bonded atoms are reduced at the same time. For example, in CHARMM (Brooks et al., 1983),
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the hydrogen-bond potential energy is described by a sum of four-body terms

Ehb ({TADa Z(AHiD)v A(AAiAH)}’ {C’ya 057 Y 57 m, ’fl}) =

E (% - %) cos™ L(A---H—D) cos" L(AA—A--H) (34)
H-bonds  \'AD  TAD
AA—A*H—-D

where AA, A, H and D are the acceptor-antecedent, the acceptor, the hydrogen and the
donor heavy atom, m depends on the type of D (m = 0, 2 or 4) and n on the type of A
(n =0 or 2). In CHARMM, the cos™ function is zeroed if its argument is less than 90° and
the cos™ function if its argument is less than 90° and n > 0. Normally a 12-10 function is
used for the radial dependence, i.e. v = 12 and § = 10. In other force fields (e. g. Weiner et
al., 1984), only the radial dependence is retained and a two-body 12-10 function is used (i. e.
m = n = 0 in Equation (33)). The presence of such a specific hydrogen-bonding interaction
term requires some additional bookkeeping. If the structure is rigid enough, a permanent list
of hydrogen-bonded groups can be defined. This list can also be automatically updated at
regular intervals. If one assumes that the radial 12-10 correction can equally well be modelled
by a 12-6 correction, it can be incorporated into the normal van der Waals interaction terms,
as is done in GROMOS (van Gunsteren & Berendsen, 1987, 1990). This requires the use of a
special combination rule for 12-6 van der Waals parameters, namely

Colir ) = \Jeslisti) coGitis)  and  Cuali, ) = y[erali tig) cra (s i) (35)

where ¢;; determines if the interaction between ¢ and j is polar or not. This method offers the
advantage that no special bookkeeping is required for the hydrogen bonds. The inconvenience
is that even if the orientation of the D-H group is not optimal for making a hydrogen bond to
A, the special van der Waals parameters will still be used for the A/D interaction. When only
a radial function is used, there is no explicit angle dependence, but the implicit dependence of
the electrostatic and repulsive van der Waals non-bonded interaction upon the hydrogen-bond
angle plays a similar role.

4 Conclusion

In the present text, some of the main issues with respect to empirical classical force fields have
been briefly described. Focusing mainly on models at atomic resolution, the terms that are
most commonly found in the interaction energy function have been listed.

Since for the study of many large problems, the use of molecular orbital methods is compu-
tationally untractable, there is considerable interest in developing such empirical force fields.
Due to the constant increase of the power of computers, the problems that can be addressed by
these techniques increase regularly in size, complexity and in terms of the volume of conforma-
tional space that can be sampled. This in turn, triggers further development of the force fields
themselves. New functional forms are proposed, which allow for a better energetic resolution
in force fields, and systematic procedures begin to emerge for the parametrization of these
functions based both on theoretical and experimental data.
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united atoms idem aliphatic H (e)
(aliphatic groups only)
united atoms (all CH,, groups) idem all H bound to C  (e)
united atoms (all) idem all H (e)
idem ezxplicit solvent:  idem include explicit solvent terms tdem ()
idem implicit solvent:  idem possible corrections in the solvent ()
functional form, parameters or by
additional terms or in the equation of
motion
atom groups as “bead(s)”: implicit solvent: statistically based interaction function  side-chain (g)
e.g. amino-acids in (or crystal)
proteins represented by
one or a few beads
molecules:
represented by a sphere, a rod  liquid phase: average intermolecular interaction intramolecular (h)

or a disk

(or crystal)

function




(n) Subset Type Term
1 all atoms P Kinetic energy
charged atoms P Interaction with an external electric field
surface atoms P Stochastic/frictional force on a macromolecule
listed or all atoms U Atomic positional restraining
2 all atom pairs P Pairwise non-bonded interaction (point char-
ges, point charge/point dipole ..., van der
Waals, solvent accessible surface area interac-
tion)
bonded atoms P Covalent bond
H-bonded atoms P H-bonding potential (Acceptor—-Donor)
listed atom pairs U Distance restraining
3 all atom triples P Triple non-bonded interactions (expensive, sel-
domly used)
atoms in bond angle P Covalent bond-angle bending
pairs of bonds P Bond-bond cross-term
bonds in angle P Bond angle cross-term
4 atoms in dihedrals P Torsional interaction, improper dihedral inter-
action
H-bonded atoms P H bonding (Acceptor Antecedent, Acceptor,
Hydrogen, Donor)
pairs of angles P Angle angle cross-term (around one centre)
atoms in dihedral p Bond-dihedral cross-term (central bond), Ang-
le-angle—torsion cross-term
atoms in dihedral U J-value restraining
>5 covalent neighbours P Other cross-terms among bond, angles and
dihedrals
N all atoms P Point polarizability
all atoms U Radius of gyration unfolding force

Table II: n-body interaction terms found in common force fields

(n): order of the term, i. e. the number of particles involved in the interaction term, possibly
all atoms (INV), Subset: subset of atoms for which the term is calculated, either from a list or
all atoms (pairs, triples, respectively), Type: physical (P) or unphysical (U) term.
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