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Abstract: Methods to compute free energy differences between different states of a molecular system are reviewed with
the aim of identifying their basic ingredients and their utility when applied in practice to biomolecular systems. A free
energy calculation is comprised of three basic components: (i) a suitable model or Hamiltonian, (ii) a sampling protocol
with which one can generate a representative ensemble of molecular configurations, and (iii) an estimator of the free energy
difference itself. Alternative sampling protocols can be distinguished according to whether one or more states are to be
sampled. In cases where only a single state is considered, six alternative techniques could be distinguished: (i) changing
the dynamics, (ii) deforming the energy surface, (iii) extending the dimensionality, (iv) perturbing the forces, (v) reducing
the number of degrees of freedom, and (vi) multi-copy approaches. In cases where multiple states are to be sampled, the
three primary techniques are staging, importance sampling, and adiabatic decoupling. Estimators of the free energy can
be classified as global methods that either count the number of times a given state is sampled or use energy differences. Or,
they can be classified as local methods that either make use of the force or are based on transition probabilities. Finally,
this overview of the available techniques and how they can be best used in a practical context is aimed at helping the
reader choose the most appropriate combination of approaches for the biomolecular system, Hamiltonian and free energy
difference of interest.
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Introduction

The estimation of free energies using molecular simulation tech-
niques has been an active field of research for many decades. The
free energy is a highly desirable quantity to compute. It is in essence
the factor that determines how a process will proceed and the prob-
ability that a system will adopt a given state. The ability to calculate
free energies from molecular simulations not only allows one to
understand the underlying processes on an atomic level but also to
probe states of a system not accessible experimentally. In particular,
if precise and accurate estimates of the free energy of a system could
be obtained directly from numerical simulations, the need to mea-
sure thermodynamic properties of a system, such as ligand binding
constants, by experiment would be greatly reduced. This is why, for
example, free energy calculations have attracted much interest in
areas such as rational drug design and material science. However,
to obtain a reliable estimate of the free energy of a system, a number
of challenges must be met.

The free energy F of a system in the canonical ensemble, i.e., at
constant number of particles, volume, and temperature, is given by

F = − 1

β
ln Q , (1)

where β is the inverse temperature divided by Boltzmann’s con-
stant kB and Q is the partition function of the system. For simplicity,
we will restrict ourselves to a classical description of the system
in Cartesian coordinates. The system is also assumed to be at ther-
modynamic equilibrium. In this case, the partition function can be
expressed as

Q = 1

h3N N !
∫∫

e−βH(p, r)dpdr , (2)
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where N is the number of particles in the system and h is Planck’s
constant. The factor N ! appears only for indistinguishable particles.
The integral is performed over all 3N positions r and conjugate
momenta p, respectively. The Hamiltonian H(p, r) gives the total
energy of the system in a given configuration, i.e., a given set of
momenta and coordinates.

The absolute free energy [eq. (1)] can only be calculated directly
in a limited number of cases where an analytical expression for
the partition function can be obtained. This is primarily for small
simple systems governed by a very simple Hamiltonian. For larger
systems with strong interactions between the particles, an analytical
formulation of the partition function is generally not possible. In
such cases, one is restricted to the calculation of the difference in
free energy between the system of interest and a given reference
state. However, if the free energy of the reference state is known,
such as for an ideal gas, for a gaseous system, or an ideal crystal, for
a solid phase system, the absolute free energy of the system can still
be obtained. In these cases, an analytical expression for the partition
function can be obtained either due to lack of interactions between
the particles (ideal gas) or simplifications due to symmetry (ideal
crystal). Defining a suitable reference state for a liquid phase system
is more difficult although there have been ongoing attempts to do
so.1, 2

In most cases, where we wish to compare to experiment, our aim
is to determine relative free energies, for example, the difference in
binding of two compounds to the same receptor. Note, the relative
free energy between the bound and the unbound state of a single
compound is referred to by some as the “absolute” free energy of
binding but this should not be confused with the absolute free energy
of the system discussed earlier. Generally speaking we seek to esti-
mate the difference in free energy between two states A and B (or
possibly a series of pairs of states A and B).

�FBA = FB − FA = −β−1 ln
QB

QA
, (3)

where A and B (i.e., HA and HB) might differ in the way the parti-
cles interact with each other, i.e., when calculating a difference in
free energy between two different compounds in an “alchemical”
perturbation. However, A and B can also correspond to different
conformations of the same molecular system where the accessible
conformational space is restricted in A and B to the desired regions
for, e.g., a set of restraints.

The main challenges that have to be met when attempting to
determine differences in free energy using molecular simulation
techniques relate to the choice of Hamiltonian and the sampling
scheme on which the estimate of the relative free energy will be
based. That is, a free energy calculation consists of three basic
components.

• A model Hamiltonian (see “Molecular Model” Section).
• A sampling protocol, which will be used to generate a represen-

tative ensemble of configurations (see “Sampling” Section).
• A method to estimate the free energy difference (see “Estimation

of the Free Energy” Section).

The various choices available for the basic components will be dis-
cussed in detail below. The aim is to enable the reader to classify

the vast array of methods that have been described in the literature
by identifying which choices have been made for these three basic
components. Although many of these different techniques should
in theory yield equivalent results, in practice given limitations in
respect to the Hamiltonian and finite sampling, the results obtained
using certain techniques are much more precise and accurate than
others. Here, we focus primarily on those techniques that are most
applicable in practical free energy calculations. We also focus on
perturbations where only part of the system differs between state A
and B, such as in “alchemical” free energy perturbations, where one
molecule is perturbed into another while the majority of the system
(e.g., the solvent) remains unperturbed. Note, about a decade ago,
an expression was proposed for the relative free energy �FBA in
terms of the work done to force the system from state A to state B
under non-equilibrium conditions.3 This led to much research into
the relation between equilibrium and non-equilibrium methods to
compute �FBA. However, since non-equilibrium methods are yet
to be shown to have practical advantages over equilibrium methods
in terms of accuracy or efficiency we will focus our discussion on
equilibrium approaches in “Estimation of the Free Energy” Section.

Molecular Model

To estimate free energy differences reliably a molecular model is
required that describes the thermodynamics of the system correctly.
That is, the Hamiltonian used to calculate the energy and forces
must be chosen such that all configurations have the correct rela-
tive probability. In practice, the choice of Hamiltonian is often a
compromise between accuracy and efficiency. The evaluation of the
energy and forces needs to be computationally inexpensive enough
to permit sufficient sampling, yet of sufficient accuracy to estimate
the free energy reliably.

The cost of the energy and force evaluation is primarily deter-
mined by two factors: the degrees of freedom that are considered
and the functional form of the Hamiltonian. One can move from
a quantum-mechanical description of the system where the elec-
tronic degrees of freedom are modeled explicitly, to a classical
description where one atom is treated as one particle, to a coarse-
grained description where groups of atoms are merged into one
particle. A reduction in the number of degrees of freedom can,
however, also be obtained by reducing the system size or treating
parts of the system (e.g., the solvent) as a continuum. The motion
along those degrees of freedom modeled explicitly will, ideally, be
governed by a potential of mean force that represents the motion
along the (“implicit”) degrees of freedom that have been omitted.
The choice of which degrees of freedom are modeled explicitly
depends on the system of interest and the property one wishes to
estimate. If a certain (class of) degree(s) of freedom is believed to
have no effect on the property of interest, it can be omitted and the
computing time gained invested in sampling the relevant degrees
of freedom more extensively. How one can enhance sampling by
reducing the number of degrees of freedom is further discussed in
“Sampling Configurations of One State.” The computational effort
will also depend strongly on the functional form of the Hamiltonian.
A quantum-mechanical description of the system will in general
be computationally more demanding than a classical descrip-
tion. Furthermore, within the realms of quantum-mechanical and
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classical methodology there exist a variety of approaches for which
the computational demands vary markedly depending on the choice
of approximation to the time-independent Schrödinger equation or
the complexity of the functional form of the classical Hamiltonian,
the choice again being a compromise between accuracy and speed.

Here, we will focus on classical Hamiltonians that incorporate
fixed point- charges, although this is not an essential limitation of a
classical model. This type of Hamiltonian, generally referred to as a
“force field,” is commonly used when modeling biomolecules such
as proteins, nucleic acids, lipids, or carbohydrates. Although there
are differences in the functional form used in the various force fields
available they contain many common features. As an example, we
will consider the GROMOS force field,4, 5 The classical Hamiltonian
is split into a kinetic K(p) and a potential energy term V(r),

H(p, r) = K(p) + V(r) . (4)

The kinetic term,

K(p) =
N∑

i=1

p2
i

2mi
, (5)

is independent of the particle positions if no configurational con-
straints are applied. Here, mi is the mass of particle i. The potential
energy term returns the interaction energy for a given configuration
determined by a set of particle coordinates r. It is a sum of various
terms describing the bonded (bon) and nonbonded (nonb) interac-
tions between particles as well as special, “unphysical” interactions
such as restraints,

V(r) = Vphys(r) + V special(r) = Vbon(r) + Vnonb(r) + V special(r).
(6)

The bonded interactions consist of terms describing the bond-
stretching, the bond-angle bending, and the dihedral-angle bending.
The set of bonded interactions also contains terms that maintain a
particular chirality or ensure planarity of groups. The nonbonded
interactions are modeled by a Lennard-Jones 6-12 term describing
dispersion and repulsion (VLJ) and an electrostatic term (VCRF)

Vnonb(r) = VLJ(r) + VCRF(r) (7)

=
∑

nonbonded
pairs(i, j)

{[
C12(i, j)

r6
ij

− C6(i, j)

]
1

r6
ij

+ qiqj

4πε0ε1

[
1

rij
−

1
2 Crf r2

ij

R3
rf

− 1 − 1
2 Crf

Rrf

]}
. (8)

Here, rij is the distance between atoms i and j, C12(i, j) and
C6(i, j) are the repulsive and the attractive Lennard-Jones param-
eters, respectively, qi and qj are the partial charges of atoms i and
j, respectively, ε0 is the permittivity of the vacuum, and ε1 is the
relative dielectric permittivity of the system (generally, ε1 = 1). Crf

and Rrf are parameters of the reaction field.6

Various force fields differ in their functional form and the way
their parameters were derived.7, 8 Parameters for the bond lengths
and angles are often derived from quantum chemical calculations
or crystal structures. Torsional parameters can be adjusted to fit
torsional profiles obtained from quantum-chemical calculations or
from experiment. This is done in conjunction with fitting of the non-
bonded interaction parameters as the latter have a strong influence
on the torsional barriers. In the derivation of nonbonded parameters,
many differences exist between the force fields. Whereas force fields
such as AMBER9, 10 and CHARMM11, 12 fit the charges to reproduce
the electrostatic potential obtained from quantum-chemical calcula-
tions, OPLS13–17 and GROMOS4, 5, 18–20 fit nonbonded parameters
(charges and Lennard-Jones parameters) such that they reproduce
the thermodynamic properties, i.e., density and heat of vaporization,
of simple liquids. For example, in the latest version of the GROMOS
force-field,5 the parameters have been optimized to reproduce the
free enthalpy of hydration and apolar solvation. The accuracy of
biomolecular force fields is typically assessed by comparison of
the results of simulations to experimental data. Here, our interest
concerns comparisons which involve free energies. Shirts et al.21

have pointed out that the solubility of side-chain analogs is under-
estimated by many current force fields (AMBER, CHARMM, and
OPLS-AA). As most biomolecular processes of interest take place
in aqueous media, it is to be expected that a failure to reproduce the
solubility of analogs of amino acid side chains is likely to result in
a failure to reproduce the secondary structure ensembles correctly.
The latest GROMOS force field5 has, therefore, been parameter-
ized not only to reproduce the properties of pure liquids but also
the solvation free energies of the amino acid side-chain analogs.
Interestingly, it was found that using a fixed charge model it was
impossible to simultaneously reproduce the solvation free energies
in cyclohexane and water, i.e., with a single set of partial charges.
Recently, Mobley et al.22 have reported hydration free energies for
504 small molecules parameterized using the AMBER Antecham-
ber program23 to assign GAFF24 parameters. They were able to
identify systematic errors for particular classes of compounds. With
the availability and reliability of free energy calculations increasing,
there are growing opportunities to use free energy calculations in
force-field development.

Sampling

As pointed out in Introduction, the present work is primarily con-
cerned with the estimation of the difference in free energy �FBA

between two states A and B [eq. (3)] of a system. The challenge is
to estimate a ratio of partition functions and in this section will be
discussed how simulations can be used to estimate such quantities.

One instructive estimator (see Estimation of the Free Energy
section for other choices) makes use of energy difference
distributions

ρA (�H; �HBA) = 〈δ [�H − (HB − HA)]〉A (9)

ρB (�H; �HBA) = 〈δ [�H − (HB − HA)]〉B . (10)

Here, 〈·〉X indicates an average over an ensemble obtained from a
simulation at state X, δ is the delta function, and �HBA(p, r) =
HB(p, r) − HA(p, r) returns the energy difference between states A
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and B for a given configuration. The free energy difference can be
expressed in terms of these energy difference distributions,25–27

ρB (�H; �HBA) exp [−β�FBA] = ρA (�H; �HBA) exp [−β�H] .
(11)

Equation (11) states that the difference in free energy �FBA is equal
to the difference in energy �H at the point where the two energy dif-
ference distributions ρA and ρB intersect. This implies that to obtain
a reliable estimate of �FBA all “important” configurations at states
A and B must be sampled in order that converged energy difference
distributions can be constructed. Section “Sampling Configurations
of One State” defines what are “important” configurations and why
the sampling of all these configurations during a simulation may
be challenging. A sufficient condition to estimate a difference in
free energy via eq. (11) is that the intersection region of the energy
difference distributions be sampled adequately. In many practical
applications, however, the distributions obtained from simulations
at the end states A and B do not show any overlap, precluding the
determination of the point of intersection. It is therefore necessary
to find a Hamiltonian that “connects” or “bridges” the two (or more)
states of interest. Possible ways of connecting the states and sam-
pling protocols that ensure sampling of the important configurations
of the “combined” Hamiltonian are discussed in “Sampling Relative
Probabilities of States” Section.

It should be stressed that the sampling, i.e., the generation of
configurations from which the desired quantities can be computed,
is the most time consuming part of a free energy calculation. In
contrast, the estimation of the free energy from the sampled con-
figurations, which is discussed in “Estimation of the Free Energy”
Section, is comparatively fast.

Sampling Configurations of One State

Probability Densities and Ensemble Averages

In classical statistical mechanics, an ensemble is a collection of an
infinite number of systems, each in a particular configuration of p
and r, which obeys a given probability density. In the canonical
ensemble, this probability density p(p, r) is given by

p( p, r) = e−βH(p, r)∫∫
e−βH(p, r)dpdr

. (12)

If the Hamiltonian [eq. (4)] is separable in p and r, the kinetic con-
tribution can be integrated out and we obtain the configurational
probability density

ρ(r) = e−βV(r)∫
e−βV(r)dr

. (13)

In the following, a collection of configurations which obeys this
probability density will be called Boltzmann distributed.

We can define an ensemble average of an observable A(r) as

〈A〉 =
∫

A(r)ρ(r)dr . (14)

To estimate such an ensemble average from a simulation of a given
system, we need a method which can be used to generate configura-
tions that have the desired probability density ρ(r). Assuming that
the integral in eq. (14) is dominated by ρ(r), sampling configurations
from ρ(r) to obtain 〈A〉 is efficient as the configurations which have
a high probability in ρ(r) contribute most to the ensemble average
〈A〉. However, there are cases where the integral in eq. (14) is domi-
nated not by ρ(r) but by A(r), e.g., because A contains an exponential
function as do estimators for the free energy (see “Estimation of the
Free Energy” Section). In these cases, sampling from a Boltzmann
distribution is not the optimal choice and other sampling strategies
should be pursued as discussed in “Sampling Relative Probabilities
of States” Section.

Methods to Sample from a Boltzmann Distribution

The two most popular methods used to generate Boltzmann dis-
tributed ensembles are the Metropolis Monte Carlo algorithm28, 29

and molecular dynamics simulation techniques.30, 31

Using the Metropolis Monte Carlo algorithm, a random walk
through configuration space is constructed such that the probability
of visiting a certain configuration r is proportional to exp[−βV(r)].
One possible way of constructing such a random walk is to generate
a new configuration by applying a random displacement to a particle
chosen randomly. This new configuration r′ is then accepted with
the probability p = min

{
1, exp[−β(V(r′) − V(r))]}.

In a molecular dynamics simulation, the equations of motion
for the particles of the system are integrated forward in time. The
equations of motion according to Newton can be expressed as

mi r̈i = f i (r) = −∂V (r)
∂ri

, (15)

where mi is the mass of particle i, ri is the Cartesian position vec-
tor of particle i, the double dot indicates the second derivative with
respect to time, and f i is the force on atom i. The numerical integra-
tion can be performed using different discretization schemes.32, 33

A molecular dynamics simulation generates (assuming perfect inte-
gration) configurations, which are distributed according to the
microcanonical (constant energy) ensemble. To obtain an ensemble
of configurations which is distributed according to the canonical
ensemble, the system may be coupled to a thermostat to keep
the temperature constant. Many different thermostats have been
devised,34 which differ in the precision with which they can keep
the system in the canonical ensemble and the ease with which they
can be implemented into a molecular dynamics program.

The Problem of Quasi-Nonergodicity

When estimating an ensemble average of an observable A (r) from a
Monte Carlo or a molecular dynamics simulation, the observable is
averaged over all generated configurations. In a molecular dynamics
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simulation, the ensemble average 〈A〉 is estimated by calculating the
time average

Ā = lim
τ→∞

1

τ

∫ τ

0
A(r(t))dt. (16)

The assumption that the time average equals the ensemble average

Ā = 〈A〉 , (17)

is called the ergodic hypothesis.31 Most systems cannot be proven to
have ergodic behavior. However, if during a simulation all “impor-
tant” configurations, i.e., all configurations for which the probability
ρ(r) is significant are visited, then eq. (17) will hold to a first approx-
imation. If regions of high probability in configurational space are
separated by significant (free) energy barriers, it is unlikely that
all important configurations will be sampled. This is known as the
problem of quasi-nonergodicity. In a molecular dynamics simula-
tion, the average kinetic energy per degree of freedom is only about
kBT/2, which means that the larger a barrier, the longer it will take
for the barrier to be crossed. Quasi-nonergodicity can also occur in
Monte Carlo simulations. Well chosen random moves can alleviate
the problem, the design of such moves is, however, far from trivial.

The success of the Metropolis Monte Carlo (MC) and molecular
dynamics (MD) simulation methods is due to their ability to “restrict
the sampling of the configuration space to the extremely small frac-
tion that contributes significantly to most properties of interest.”35

That is, properties for which the ensemble average is dominated by
the probability distribution [see eq. (14)]. For the estimation of these
properties, sampling algorithms such as MD or MC, that generate
Boltzmann distributed ensembles of configurations, are in principle
ideal. In practice, problems occur due to quasi-nonergodicity, i.e.,
the inability to visit all important configurations during the simu-
lation. In these cases so called enhanced sampling methods, which
will be discussed in the remainder of this section, may be applied.

Methods to Alleviate the Problem of Quasi-Nonergodicity

In the following we discuss methods that enhance the sampling of
configurational space. Sampling problems can be loosely divided
into two categories. Either there exists some knowledge in regard
to those regions of configurational space not sampled sufficiently or
there is no such knowledge. For example, a particular molecule may
have two preferred conformations but only one is sampled during a
simulation. In such cases, it is possible to define a variable as a func-
tion of r, e.g., a torsional angle, which can be used to discriminate
between the two conformations. The simulation protocol can then
be changed such that configurations which correspond to values of
this variable over a predefined range are sampled. Whenever such
a variable, which may be an arbitrarily complicated function of the
atomic positions of the molecules, can be identified we are faced with
a sampling problem which resembles the one encountered in calcu-
lations of the free energy difference between two states A and B. The
desired “end states” (e.g., conformations) are known. The challenge
is to define a path which connects these end states, and to ensure
that sampling is performed along the whole path. Because of the
similarity between these sampling problems and those encountered

when estimating the difference in free energy between two states A
and B, they will be discussed in “Sampling Relative Probabilities
of States” Section.

If the important regions of configurational space are not known,
a number of techniques can be used to enhance sampling. These
include:

1. Changing the dynamics without changing the potential energy
surface to emphasize motion or sampling along the slow degrees
of freedom relative to the fast degrees of freedom;

2. Deforming the energy surface to increase the probability with
which (free) energy barriers can be surmounted;

3. Extending the dimensionality to circumvent energy
barriers;

4. Perturbing the forces;
5. Reducing the number of degrees of freedom;
6. Multi-copy approaches.

Only using technique 1 is the probability distribution of the con-
figurations sampled not modified. Techniques 2–6 sample config-
urations from a modified probability distribution which focuses
sampling on configurations relevant to a particular property as
opposed to generating a particular distribution. Below the vari-
ous approaches are illustrated using examples from the literature.
Note this is not a complete list of methods that combine the various
techniques. Our aim is rather to assist the reader to categorize new
methods he or she encounters.

Emphasizing Slow Degrees of Freedom Relative to Fast. The equi-
librium properties [eq. (14)] of a system described by a Hamiltonian
such as eq. (4) are independent of the dynamics of the system. Hence,
the dynamics of the system can be changed without altering the prob-
ability distribution of configurations [eq. (13)]. This can either be
done by choosing a different functional form for the kinetic term of
the Hamiltonian [eq. (5)], by changing the masses of selected par-
ticles, or by the direct modification of the momentum distribution.
The goal in all of these approaches is to slow down high frequency
motions and to speed up low frequency motions. Slowing down
high frequency motions allows a larger time step to be used for
the integration of the discretized equations of motion, speeding up
low frequency motions allows configurations associated with these
motions to be sampled within a shorter simulation time. Overall,
this leads to configurational space being explored more efficiently.
One approach to changing the functional form of the kinetic term is
to replace it by a more general quadratic form 1

2

∑N
ij=1 ṙiMij ṙj where

Mij is the so called “mass tensor.”36 An appropriate choice of Mij

can be used to equalize the speed of the various motions in the sys-
tem. However, liquid phase systems are anharmonic and devising an
appropriate mass tensor is difficult. Jacucci and Rahman changed
the masses in a water model to equalize the three moments of iner-
tia in the molecule37 allowing an increase of the integration time
step. Increase of the hydrogen mass has also been shown to lead
to more efficient sampling in more complex systems.38, 39 A pit-
fall when changing the masses is that the gain in efficiency through
the ability to use a larger integration time step may be partially
offset by a reduction of diffusivity, and therefore, a slower explo-
ration of configurational space within a given length of simulation. A
method that directly changes the momenta is momentum-enhanced
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hybrid Monte Carlo (ME-HMC).40 In HMC,41 random momenta
are assigned according to a Maxwell distribution. Several steps of
MD are then performed using a (too) large time step. The move
is then accepted or rejected according to a Metropolis-type crite-
rion. In ME-HMC, random momenta are assigned according to a
modified distribution with the aim of biasing the dynamics towards
sampling of specific slow motions which are identified by time-
averaging over the momenta. Here, the averaging time is a crucial
but not easily determined parameter.

The methods presented above aim at slowing down the motion
along the fast degrees of freedom and at speeding up the motion
along the slow ones. An alternative approach is to leave the dynamics
unchanged but to use different integration time steps for differ-
ent parts of the system. In many of these multiple time step
algorithms,42–44 the time step used in the interaction calculation
increases with the distance by which the particles involved are sep-
arated. The implementation of these methods requires great care to
avoid numerical instabilities. Other challenges involve resonance
effects, energy drifts, the integration of these methods with lattice
sum approaches for the calculation of the electrostatic interactions,
and their generalization to various thermodynamic ensembles.

Sampling Enhancement Through Deformation of the Potential
Energy Surface. When sampling from a canonical distribution
probability is proportional to exp [−βV (r)]. This means that the
probability of sampling a given configuration decreases exponen-
tially as the energy increases. Barrier crossings are therefore rare
events and important regions of configurational space may not be
visited. Sampling can be improved by changing the probability dis-
tribution such that the probability of high energy configurations
is increased. Sampling from a distribution other than the canon-
ical one can be expressed in terms of canonical sampling where
an additional biasing potential energy term has been added to the
Hamiltonian. The configurational space is enlarged to enable bar-
riers to be crossed. The ensemble that is sampled should, however,
not deviate significantly from the original canonical distribution as
otherwise time will be spent sampling configurations which do not
contribute to the property of interest [eq. (14)].

One approach to increase the probability of visiting high energy
states is to simulate at elevated temperature.45–48 This corresponds
to a simulation using an effective Hamiltonian where all interactions
are scaled down by a constant factor. This approach can, however,
quickly lead to the low energy configurations which contribute most
to the ensemble average [eq. (14)] not being sampled sufficiently.

In the multi-canonical ensemble method49–51 and related
approaches,52 the probability of visiting high energy states is
enhanced in a more controlled fashion. Although there might be no
information available on the important configurations which are not
sampled, the energy can always be chosen as a variable along which
sampling is enhanced. In the multi-canonical ensemble method, the
sampling scheme is modified such that the probability distribution is
flat over a certain energy range. This is achieved by giving weights to
the different macrostates which correspond to a given energy value.
These weights must be determined iteratively as they correspond to
the probability, i.e., the free energy, of a given energy macrostate
(see also “Estimation of the Free Energy” Section). A “flat” sam-
pling over a given energy range is also obtained in the Wang-Landau

sampling method.53 The acceptance criterion is chosen such that
each energy level is visited with the same probability. The weights
are adapted during the simulation multiplying by a factor each time
a particular energy level is visited. Other methods that can be viewed
as extensions of the multi- canonical ensemble method include the
integrate-over-temperature approach of Gao54 and the equi-energy
sampler of Kou et al.55

Instead of achieving uniform sampling in the energy, sampling
can be performed according to a generalized probability distribu-
tion function. One such generalized probability distribution function
was suggested by Tsallis.56 By adaptation of a parameter in the sam-
pling distribution, sampling can be biased towards sampling of high
energy regions or low energy regions. For a particular choice of
parameter, the canonical ensemble distribution is recovered. Sam-
pling according to a Tsallis distribution can be reformulated as
canonical sampling of an effective Hamiltonian.57 The approach has
been generalized to allow sampling from a broad class of probability
distribution functions.58

Other strategies to enhance sampling that rely on a direct
modification of the energy surface are hyperdynamics,59–61 accel-
erated molecular dynamics,62, 63 puddle jumping,64 and related
approaches.65 In these methods, energy wells are filled up or elevated
to enable more frequent barrier crossing. Care has, however, to be
taken to ensure that important low energy regions of configurational
space are sampled sufficiently.

The molecular model can also be modified directly to make the
potential energy surface smoother. This can, for e.g., be done by
using soft-core potentials.66–69 These potentials may be used instead
of the van der Waals and electrostatic non-bonded potential energy
terms normally used. They do not show a singularity at zero inter-
atomic distance but return a tunable, finite energy. This can be used
to decrease the potential energy barriers between conformational
states.

Extension of Dimensionality. An extension of the three-dimensional
physical space to more dimensions can also lead to more effec-
tive barrier crossing by opening up new low energy pathways.70, 71

Mapped back to three dimensions, the potential energy surface of
the system with increased dimensionality corresponds to a system
in which the potential energy surface has been deformed.

Modifying the Forces. Enhanced sampling can also be achieved by
the direct modification of the forces acting on the system. In the
approach of Wu and Wang72–74 the sampling of configurational
space is accelerated by the addition of a guiding force which, in
an ideal case, corresponds to the gradient of the local free-energy
surface. The guiding force is estimated from the forces experienced
by the system by the use of a memory function. As the method
uses time-averaged information, it generates irreversible trajectories
which may lead to errors in the calculated canonical averages.40 In
the PEACS method75 the forces are modified such that a set of con-
figurations with constant potential energy is generated. This leads
to enhanced sampling.

Reducing the Number of Degrees of Freedom. The number of
degrees of freedom in the system determines the number of energy
and force evaluations that are necessary. Degrees of freedom that
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are believed to have no influence on the property of interest should
be omitted. This is especially true in the case of degrees of freedom
involved in fast motion, as their omission can lead to a substantial
increase in efficiency due to the possibility of using a larger integra-
tion time step. A very common example is the application of bond
constraints using, for e.g., the SHAKE76 algorithm. Bond vibrations
belong to the fastest molecular motions which are generally mod-
eled in a biomolecular simulation and the application of bond length
constraints allows the use of a two to four times larger integration
time step at a 10–20% increase in computing effort.32

When modeling larger biomolecular systems such as lipid bilay-
ers models with a reduced number of degrees of freedom compared
to atomistic models are used frequently,77 In these coarse-grained
models,78 groups of atoms are merged into one particle (see
also “Molecular Model” Section) resulting in a smoother poten-
tial energy surface. Simulations using coarse-grained models show
enhanced diffusion and explore configurational space quicker. Fur-
thermore, the smoother potential energy surface allows the use of a
larger integration time step.79

A drastic reduction in number of degrees of freedom can be
obtained by the use of implicit solvent models.80, 81 Here, the sol-
vent is represented as a continuum. As in general a large number of
molecules is needed to model the solvent explicitly, implicit solvent
models can yield a considerable increase in computational effi-
ciency. However, although the reduction in the number of degrees of
freedom that must be treated leads to a faster exploration of configu-
rational space, there is no guarantee that the configurations obtained
represent the canonical probability distribution of the original sys-
tem. In some cases, this problem can be alleviated by combining the
approaches discussed above with multi-copy methods (see below).

Multi-Copy Approaches. In multi-copy approaches, several repli-
cas of the system are simulated, e.g., at various temperatures.82–84

After a certain number of steps, an exchange of replicas is attempted
and accepted or rejected based on a Metropolis Monte Carlo crite-
rion. This swapping procedure enables the enhanced sampling at the
higher temperature replica to be propagated into the low temperature
replica while still maintaining an appropriate probability distribu-
tion. This approach can be generalized such that the Hamiltonian
as opposed to the temperature is varied between replicas.85–87 For
example, different levels of soft-core potentials ranging from normal
nonbonded interactions to very soft nonbonded interactions which
enhance sampling may be used in the different replicas.88 Hamilto-
nian replica exchange can also be used to connect models of varying
“grain level.”89–92 These approaches can be used to exploit the sam-
pling abilities of coarse-grained models without loosing information
at an atomic level.

Sampling Relative Probabilities of States

Canonical sampling at the end states is in general not optimal when
one wishes to estimate the difference in free energy between these
states. As has been pointed out at the beginning of the section
using energy difference distributions ρ(�H; �HBA), it is neces-
sary to sample all important configurations of the end states. How
this can be achieved and which obstacles are encountered has been
discussed in “Sampling Configurations of One State” Section. The

difference in free energy between two states A and B can be iden-
tified as the energy difference at the point where the two energy
difference distributions ρA(�H; �HBA) and ρB(�H; �HBA) inter-
sect (see “Sampling” Section). Therefore, the two (or more) states
have to be connected as part of the same overall system to allow
sufficient sampling in the intersection region. In the following we
will discuss how such a combined Hamiltonian can be constructed
and which strategies can be applied to ensure the configurational
distribution function is sampled appropriately.

Definition of a Combined Hamiltonian

Assume we want to calculate the free energy difference between two
states A and B [eq. (3)]. We wish, therefore, to define a combined
Hamiltonian Hcomb such that the important configurations of this
combined Hamiltonian are primarily composed of configurations
important to states A and B. The combined Hamiltonian will be some
function of the end state Hamiltonians HA and HB, or in practice VA

and VB. It can either

• be dependent on a coupling parameter λ such that for a particular
value of λ (e.g., 0) Vcomb = VA and for another (e.g., 1) Vcomb =
VB, or

• not be explicitly dependent on a coupling parameter although it
may still be possible to define a function λ = λ(r) such that
for λ = 0 we obtain Vcomb ≈ VA and for λ = 1 we obtain
Vcomb ≈ VB.

The first approach, the coupling-parameter approach,93 has been
widely used in free energy calculations. As the free energy is a state
function, i.e., it is path independent [see also eq. (3)], the depen-
dence of the combined Hamiltonian on λ can be chosen freely. This
is of course not true if there exists a physical path along which we
would like to know the potential of mean force, i.e., the free energy
as a function of λ. The λ dependence could therefore be chosen such
that sampling problems are minimized.94 It has long been realized
that a simple linear combination Vcomb = λVB + (1 −λ)VA leads to
numerical problems when particles are deleted during the perturba-
tion. This is due to the singularity in the Lennard-Jones interaction
term [eqs. (7) and (8)]. There are several ways to let a particle
“smoothly” disappear. This can either be achieved via a non-linear
scaling scheme or by making the end state Hamiltonians explicitly
dependent on λ as in the so-called “soft-core potentials.”95, 96

The second approach of combining two (or more) Hamiltonians
has been less frequently used. Possible schemes include

• the combination of HA and HB following a valence bond
formulation.97 The combined potential energy function then reads

Vcomb(r) =
(

VA(r) + VB(r) + ER
A + ER

B−
((

VA(r) − VB(r) − ER
A + ER

B

)2 + β−2
)−1/2)

/2 , (18)

where ER
A and ER

B are adjustable parameters.
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Figure 1. Pictorial representation of possible state coupling schemes.
The potential energy function of state A, yA = x2, is coupled
to the potential energy function of state B, yB = 1

2 (x − 3)2

in three different ways: Following a coupling parameter approach
ycp = λyB + (1 − λ)yA, via a sum of Boltzmann factors yexp =
−β−1 ln

[
exp (−βyA) + exp (−βyB)

]
, or using a valence bond formu-

lation yvb = (yA + yB − ((yA − yB)2 + β−2)
1
2 )/2. The normalized

probability distributions are shown [eq. (13), β = 1]. In case of the cou-
pling parameter approach, the distribution was integrated over λ before
normalization.

• A combination of HA and HB by an exponential sum followed by
taking the logarithm.98–102 That is,

Vcomb(r) = − (βs)−1 ln
{
exp

(−βs
(
VA(r) − ER

A

))
+ exp

(−βs
(
VB(r) − ER

B

))}
, (19)

where ER
A, ER

B , and s are adjustable parameters.

A possible choice of state indicator function for these combined
Hamiltonians would be λ(r) = exp(−βVB(r))/[exp(−βVA(r)) +
exp(−βVB(r))]. Note that it is not possible to make a clean separa-
tion between those approaches that explicitly depend on λ and those
that do not. In the methods mentioned above, the parameters ER

A and
ER

B can be chosen such that VA or VB are recovered. For ER
A � ER

B
we obtain Vcomb ≈ VA, i.e., we could, e.g., choose ER

B = 0 and
ER

A = n(λ − 1
2 ), with a sufficiently large, positive constant n. The

resulting λ-dependent combined Hamiltonian yields Vcomb ≈ VA

for λ = 0 and Vcomb ≈ VB for λ = 1. Note, however, that also
for ER

A = ER
B = 0 the important configurations of the combined

Hamiltonian comprise those of states A and B. This can be seen in
Figure 1, which depicts different choices of combined Hamiltonians
for a harmonic oscillator example.

The choice of combined Hamiltonian has a critical influence
on the efficiency of the free energy estimation. Combined Hamil-
tonians should be designed such that the important configurations
of states A and B are among the important configurations of the
combined state. However, due to the choice of path connecting
states A and B in the combined Hamiltonian, the combined state
will necessarily contain additional configurations with significant
Boltzmann weights. Ideally, these configurations are those which

correspond to the intersection region of the energy difference dis-
tributions [eq. (11)]. However, this need not be the case. A poorly
chosen combined Hamiltonian will contain a high proportion of
configurations which are irrelevant for the free energy estimation.
Irrelevant are those configurations which neither are of importance
to the end state nor correspond to configurations of the intersection
region of the energy difference distributions.

Ways to Sample the Combined Hamiltonian

Once a combined Hamiltonian has been defined, a sampling scheme
must be chosen that ensures all important configurations of the
combined state are sampled. For combined Hamiltonians which
comprise a coupling parameter λ, a scheme must be chosen which
ensures the whole λ range is sampled. Sampling may be focused to λ

regions of primary interest (e.g., at the end states λ = 0 and λ = 1).
The strategies discussed below can also be applied in simulations of
only one state in cases where sampling should be enhanced along
a given path variable λ(r) (see “Methods to Alleviate the Problem
of Quasi-nonergodicity” Section). The variable λ appears in the
literature with different names depending on the type of perturba-
tion described. These names include collective variable, reaction
coordinate, coupling parameter, order parameter, and others. In the
following the three basic sampling enhancement strategies staging,
importance sampling, and adiabatic decoupling will be presented
and discussed.

Staging. In staging, stratification, or windowing, several indepen-
dent simulations at different values of λ are performed.103, 104 The
system can be constrained to a particular value of λ. This is common
practice when λ appears as a parameter in the combined Hamilto-
nian. If λ is a function of the positions of the particles, a restraint is
commonly applied, e.g., a harmonic biasing potential energy term.
Constraints can, however, also be applied using, e.g., the method of
Lagrangian multipliers.105 The number of staging windows should
be chosen such that the energy difference distributions at subsequent
λ values overlap. Recent extensions of this approach include replica-
exchange methods106 where configurations between the different λ

windows are exchanged after regular time intervals.

Importance Sampling. In importance sampling, one simulation
using the combined Hamiltonian is performed. If λ appears as a
parameter in the Hamiltonian, a scheme that allows λ to be changed
has to be introduced. This can, e.g., consist of Monte Carlo moves
in λ.107 Another possibility is to treat λ as an additional degree of
freedom with an associated mass.108 The combined Hamiltonian is
now changed such that the desired probability distribution along λ

is obtained. This can be done by adding a biasing potential energy
term or by the direct modification of the parameters in the com-
bined Hamiltonian [e.g., by adjusting ER

A, ER
B , and s in eq. (19)].

The strategy of adding a biasing potential energy term was intro-
duced by Torrie and Valleau104 under the name umbrella sampling.
They proposed a staging approach where a different biasing poten-
tial energy term is applied in each simulation window. These local
(in terms of λ values) biasing potential energy terms are often easier
to determine than a single biasing potential energy term which aims
at sampling over the whole range of λ.
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To build such a biasing term, the change in free energy as a
function of λ has to be computed. How free energy differences can
be estimated from the configurations sampled is discussed in the
next section. The bias is normally built iteratively as the free energy
is the quantity to be estimated and is not known at the beginning of
the simulation.

Which probability distribution is desired may vary. If the whole
free energy profile along λ is of interest, a uniform probability along
λ is convenient. In cases where we are only interested in the relative
free energy of the states described by the extreme λ values (e.g.,
0 and 1), a probability distribution that gives more weight to these
end states may be a more appropriate choice. The probability at
intermediate λ values must, however, be large enough to allow for
crossing events between the two end states.

Instead of implementing the bias into the Hamiltonian, the force
can be modified. Instead of adding a biasing potential energy term
to the Hamiltonian based on an estimate of the free energy, a bias
based on the derivative of the free energy can be added to the force.
In the adaptive biasing force method,109–111 this derivative of the
free energy with respect to λ is estimated from the mean force on
λ (see “Estimation of the Free Energy” Section). This force is then
removed to obtain uniform sampling along λ.

Adiabatic Decoupling. In adiabatic decoupling or separation, the
aim is to decouple the motion along λ from all other degrees of free-
dom in the system.112–115 That is, one or more collective variables (λ)
are adiabatically decoupled from the rest of the system. Assignment
of a higher mass relative to the other degrees of freedom ensures
the adiabaticity of the decoupling. In the case of perfect adiabatic
separation, the free energy along λ can be obtained directly from
the probability distribution function along λ observed. Allowing the
collective variables to evolve at high temperature can result in a rapid
mapping of the free energy profile (or surface) along the collective
variable(s). If the Hamiltonian does not depend explicitly on λ, but
the collective variable λ is instead a general function of the particle
positions, i.e., λ(r), two alternative approaches can be taken. One
can perform a coordinate transformation from Cartesian coordinates
r to generalized coordinates q(r), which explicitly contain the col-
lective variable(s).112, 115 However, this method requires extensive
modification of the molecular dynamics software. The second pos-
sibility is to treat the collective variables as extended phase space
variables114, 115 similar to the approach used in metadynamics.116

The advantage of this second approach is that no coordinate trans-
formation is needed. As a consequence it is easier to implement into
existing software. The disadvantage is the need for a harmonic cou-
pling force constant as an additional parameter. Multiple time scale
integration43, 44, 115 may be used to integrate this harmonic force term
which is inexpensive but oscillates rapidly.

Embarrassment of Riches. Which of these three strategies is opti-
mal will depend on the system of interest. More precisely, the choice
of sampling protocol will depend on the relaxation times of the
degrees of freedom orthogonal to the “reaction coordinate” λ. If
these relaxation times are long, then problems may occur when using
importance sampling or adiabatic decoupling because the system is
never in equilibrium. In such cases, a staging approach, in which
simulations at different but fixed λ-values are used, may be more
appropriate as the system is allowed to relax to equilibrium in each

of the simulation windows. Another problem that can occur when
using importance sampling is due to slow diffusion along λ. Even if
the probability distribution along λ is flat the time required for the
system to diffuse along the reaction coordinate can be prohibitively
long. This problem is not encountered in staging approaches or adi-
abatic decoupling. In the former, the system is constrained to sample
over the whole range of λ. In the latter, the evolution of λ at elevated
temperature ensures the diffusion along the reaction coordinate is
rapid. Staging approaches, on the other hand, may suffer from bro-
ken ergodicity within a sampling window. This is likely to occur
if important configurations corresponding to a particular λ value
are separated by large barriers. This sampling problem might be
self-inflicted as there may exist a low energy path connecting these
important configurations which, however, requires variations in λ.
Last but not least, all three approaches can be combined. Importance
sampling and adiabatic decoupling can be applied simultaneously
within a staging window.

Estimation of the Free Energy

Common Free Energy Estimators

Once an appropriate set of configurations has been sampled (“Sam-
pling” Section), various approaches can be used to estimate the
difference in free energy [eq. (3)]. Compared to the computational
effort of generating configurations, the calculation of the free energy
from those configurations is comparatively inexpensive. Tradition-
ally, particular sampling protocols have been used with particular
estimation schemes. However, in many cases, different estimators
can be applied to the same data. The most commonly used estimation
methods are:

1. Global methods:
a. Counting the number of visits (visited states method): Here,

one tries to estimate the probability distribution along λ. Let
λA and λB be the λ values corresponding to state A and B,
respectively. The relative probability of λA and λB (p(λA)

and p(λB)) can be related to the ratio of partition functions of
states A and B.

p (λB)

p (λA)
=

∫∫∫
exp (−βH(p, r; λ)) δ (λ − λB) dpdrdλ∫∫∫
exp (−βH(p, r; λ)) δ (λ − λA) dpdrdλ

= QB

QA
,

(20)

and, therefore, [using eq. (3)]

�FBA = −β−1 ln
p (λB)

p (λA)
. (21)

In cases where the configurations sampled have been obtained
from a simulation in which λ is allowed to vary, the relative
free energies along λ can be obtained from a histogram of
λ. To this end it is irrelevant whether λ was an independent
degree of freedom during the sampling or not. It can simply
be counted how often a given λ value is encountered during
the simulation. The bin size is determined by the desired res-
olution and precision. Increasing the bin size leads to a loss
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in resolution and a gain in precision and vice versa. If the
ensemble sampled corresponds to a biased probability distri-
bution (as do ensembles obtained from importance sampling)
the histogram obtained has to be reweighted to the desired
ensemble. An ensemble average 〈X〉sampled of an observable
X can be reweighted to a different ensemble using

〈X〉desired =
〈
X exp

[−β
(
Vdesired − Vsampled

)]〉
sampled〈

exp
[−β

(
Vdesired − Vsampled

)]〉
sampled

. (22)

b. Using energy differences: The difference in free energy
between two states A and B can be related to an exponential
average over the energy difference �VBA(r) = VB(r)−VA(r)
between those states:117

�FBA = −β−1 ln 〈exp [−β�VBA]〉A (23)

= −β−1 ln

{∫
exp [−β�VBA] ρA(r)dr

}
(24)

=−β−1 ln

{∫
exp [−β�V ] ρA(�V ; �VBA)d�V

}
,

(25)

where ρA(r) is the probability distribution of positions cor-
responding to state A and ρA(�V ; �VBA) is the probability
distribution of energy differences �VBA also corresponding
to state A.25 For simplicity, we have neglected kinetic con-
tributions to the free energy. This method is known as free
energy perturbation (FEP). The difference in free energy can
be obtained from a single simulation at state A. However,
canonical sampling at state A is not optimal to estimate the
average eq. (23), as it is not dominated by the probability dis-
tribution but by the exponential factor exp [−β�VBA]. Only
configurations corresponding to the lowest values of �VBA

will contribute significantly to the average. However, these
contributions normally lie in the tail of the ρA(�V ; �VBA)

distribution, i.e., they have low probability. Therefore, sam-
pling at state A is suboptimal as it does not concentrate the
sampling effort on those configurations which contribute most
to the average.

At the beginning of “Sampling” Section we have intro-
duced the energy difference distributions [eqs. (9) and (10)]
and have shown that the difference in free energy corresponds
to the energy difference where those two distributions inter-
sect [eq. (11)]. This suggests that we can obtain the difference
in free energy from two simulations at states A and B. Specifi-
cally, the energy difference distributions ρA(�V ; �VBA) and
ρB(�V ; �VBA) can be constructed and the intersection point
determined. This implies that the distributions obtained must
overlap. If this is not the case, staging must be used and the
overall change split into a series of smaller perturbations. The
total free energy change is then obtained by summing over
the differences in free energy between subsequent windows.
The simplest way of estimating the energy difference distri-
butions is by constructing a histogram. One may, however,

also model the energy difference distributions as a series
expansion118, 119 or as an analytical function.120 This has the
advantage that the adjustable parameters of the model dis-
tribution will be determined mainly by those regions of the
distributions with high probability leading to less noise in the
tail regions. The disadvantage is, however, that the choice of
model function is arbitrary and lacks a physical basis. Once a
model for the energy difference distributions is obtained from
the simulation data, the difference in free energy can be esti-
mated from the intersection point [see eq. (11)] or by a linear
regression analysis using the relation.25–27

ln
ρA (�V ; �VBA)

ρB (�V ; �VBA)
= +β�V − β�FBA . (26)

Estimation of differences in free energy via the energy
difference distribution can be performed whenever the sam-
pling scheme allows (possibly by reweighting) the energy
difference distributions to be reconstructed with sufficient
accuracy.

Another estimator of the difference in free energy from
two simulations has been introduced by Bennett.121 Instead
of perturbing directly from A to B two perturbations to an
intermediate state R can be performed

�FBA = �FBR − �FAR = −β−1 ln
QB

QA

QR

QR
, (27)

�FBA = −β−1 ln

〈
e−β(VR−VA)

〉
A〈

e−β(VR−VB)
〉
B

. (28)

The optimal intermediate state is determined iteratively in a
postprocessing step and is given by

e−βVR(r) = [
ρA(r)−1 + ρB(r)−1]−1

const ,

VR(r) = β−1 ln
[
eβ(VA(r)−FA) + eβ(VB(r)−FB)

] + const.
(29)

It corresponds to a state with a ρR(�VBA) distribution that
shows the highest probability in the intersection region of the
ρA(�VBA) and ρB(�VBA) distributions. Again, the perturba-
tion must be split into multiple windows in cases where the
energy difference distributions do not overlap.

Instead of performing two simulations one can estimate the
free energy difference from a single simulation of a reference
state

�FBA = −β−1 ln

〈
e−β(VB−VR)

〉
R〈

e−β(VA−VR)
〉
R

. (30)

The reference state needs to envelop the important configura-
tions of both states A and B. This approach can, therefore, be
applied whenever we have sampled the probability distribu-
tion of the combined state within a single simulation using,
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e.g., importance sampling or adiabatic decoupling (see “Ways
to Sample the Combined Hamiltonian” Section). Possible
choices for the Hamiltonian of the combined state are given by
eqs. (18) and (19). Choosing s = 1, ER

A = FA, and ER
B = FB

in eq. (19) corresponds to the reference state Hamiltonian that
minimizes the expected error of eq. (30).98, 102, 121

Equilibrium free energy differences can also be obtained
using non-equilibrium methods. Replacing the energy dif-
ference �VBA(r) = VB(r) − VA(r) in eq. (23) by the work
WBA performed in a non- equilibrium transformation from
state A to state B, we obtain Jarzynski’s identity.3 The ensem-
ble average 〈·〉 then corresponds to an averaging over initial
conditions and different paths. The non-equilibrium counter-
part to Bennett’s optimal estimator [eqs. (28) and (29)] is
Crooks’ identity,122, 123 which is again obtained by replac-
ing �VBA by WBA. The non-equilibrium version of eq. (30)
has to our knowledge not yet been discussed in the lit-
erature. Non-equilibrium estimators show similar strengths
and weaknesses as their equilibrium counterparts. As dis-
cussed earlier, Bennett’s estimator [eqs. (28) and (29)] will
in general perform better than the FEP estimator [eq. (23)].
Similarly, Crooks’ identity is to be preferred over Jarzynski’s.
It is an open question in which situations non-equilibrium
approaches to free energy differences may outperform equi-
librium methods.

2. Local methods:
a. Force estimation: Another class of methods aims at estimating

the derivative of the free energy with respect to λ followed by
integration.

�FBA = FB − FA (31)

= F (λB) − F (λA) (32)

=
∫ λB

λA

dF

dλ
dλ . (33)

These so called thermodynamic integration (TI) methods go
back to Kirkwood.124 Inserting eqs. (1) and (2) into eq. (33)
we obtain

dF

dλ
=

〈
∂H

∂λ

〉
λ

, (34)

where 〈·〉λ indicates an average over configurations corre-
sponding to a given λ value. The difference in free energy
can thus be estimated as an integral over a generalized mean
force on λ. How the partial derivative of the Hamiltonian with
respect to λ is calculated depends on the sampling scheme
and the form in which λ appears in the Hamiltonian (see
“Definition of a Combined Hamiltonian” Section).

If the combined Hamiltonian shows parametric dependence
on λ (coupling parameter approach) and staged sampling
was performed, the evaluation of

〈
∂H
∂λ

〉
λ

is trivial. The partial
derivative can be calculated analytically and the averages from
simulations at different λ values. The free energy difference
is then obtained by numerical quadrature.

If the Hamiltonian shows a non-parametric dependence
on λ, i.e., λ = λ(r), the evaluation of the partial derivative
involves more complicated expressions. Two examples shall
be discussed. The first is the so-called blue-moon ensemble
method (BM)105, 125 and the second is the adaptive bias-
ing force (ABF)109–111 method. In BM, staged sampling is
performed. Within a window, λ(r) is fixed by applying a
constraint force. The derivative of the free energy is then
estimated from the average of the constraint force. In ABF,
an importance sampling scheme is used (see also “Ways to
Sample the Combined Hamiltonian” Section). That is, λ is
allowed to change during the simulation and uniform sam-
pling along λ is achieved by removing the mean force on λ.
Darve et al.109–111, 126 have shown that the average force on
λ(r) can be calculated from an expression that involves only
time derivatives of λ

dF

dλ
= −

〈
d

dt

(
mλ

dλ

dt

)〉
λ

, (35)

with 1/mλ = ∑N
i 1/mi(∂λ/∂ri)

2. That is, the derivative of
the free energy can be calculated by binning the observed λ

values and evaluating eq. (35) to calculate the average force.
b. Estimation of transition probabilities: Free energy differences

can also be calculated by monitoring the transition prob-
abilities between macrostates. Let ρi be the probability of
macrostate i. This probability corresponds to a sum over prob-
abilities of configurations (microstates), which have the same
value of a chosen observable. In our context, a macrostate i
could include all configurations that correspond to a given
value of λ. Let ρ(i → j) denote the transition probabil-
ity from macrostate i to macrostate j. It can be shown51

that the macrostate transition probability satisfies detailed
balance

ρj

ρi
= ρ(i → j)

ρ(j → i)
. (36)

The vector of macrostate probabilities can be obtained from
the eigenvector of the transpose of the transition probability
matrix. From the relative macrostate probabilities, the relative
free energies can then be obtained [see eq. (21)]. Equation (36)
was derived under the assumption that during the simulation a
local equilibrium within the current macrostate may be estab-
lished. This is only true if the macroscopic variables, i.e., in
our case λ, move slowly compared to all other degrees of
freedom. That is, if the degrees of freedom perpendicular to
λ have time to relax to equilibrium. A transition probability
matrix may be estimated from any simulation at the combined
state that allows changes in λ. If Monte Carlo moves in λ are
attempted, the acceptance probabilities can be accumulated
to obtain an estimate for the transition matrix.

Implications for Adaptive Methods

As the estimators aforementioned have different statistical proper-
ties,127 it is useful to use all possible estimators on a given data
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set. However, the result will depend more on whether all important
configurations have been sampled than on the estimator chosen.
In the approaches that involve importance sampling discussed in
“Ways to Sample the Combined Hamiltonian” Section the sam-
pling is intertwined with the estimation of the free energy. In these
methods, a biasing potential energy term or force is built up itera-
tively to obtain the desired probability distribution along λ. Once
all important configurations have been sampled, the estimates of
the free energy using any of the estimators presented should not
differ significantly. However, in the early iterations while determin-
ing the ideal bias, where sampling is still incomplete, particular
estimators may outperform others. Smith and Bruce51 have shown
that the estimation of biasing weights based on transition proba-
bilities outperforms estimation based on the number of visits to
particular macrostates in the early iterations. Similarly, algorithms
such as ABF109–111 locally estimate the biasing force based on the
configurations sampled. The biasing force can be adapted continu-
ously. Important sampling methods that aim to construct an energy
bias need to estimate the probability distribution function along λ.
Unlike a force, a probability cannot be estimated from a single con-
figuration. To estimate a probability, global information, i.e., the
whole probability distribution function along λ is needed.128 This
distribution function can only be estimated once a given number of
configurations has been sampled. This implies that the bias cannot
be built continuously and that in principle configurations that were
sampled using a bias from previous iterations cannot be used to
estimate a new bias from the current iteration step. Methods such
as local elevation129 or metadynamics116, 130 circumvent this prob-
lem by continuously building a bias that is based on the number
of visits of a certain macrostate. To this end, a history-dependent
bias is constructed by adding small, repulsive Gaussian functions to
drive the system out of the range of λ values that have already been
visited.

Analysis of Staged Calculations

When estimating the free energy profile along λ from staged calcu-
lations (see “Ways to Sample the Combined Hamiltonian” Section),
a variety of techniques can be used to estimate the offset needed to
combine separate windows. Methods that optimally unbias and com-
bine data obtained from multiple simulations at different states are
the weighted histogram analysis method (WHAM),131, 132 umbrella
integration,133, 134 and the recently introduced generalization of the
Bennett estimator to multiple states M-BAR.135

Conclusion

We have presented and discussed the three basic components of a
free energy calculation: The choice of a suited model Hamiltonian,
alternative sampling protocols which allow to generate a represen-
tative ensemble of configurations, and alternative estimators for the
difference in free energy. The aim was to enable the reader to clas-
sify methods described in the literature by identifying which choices
have been made for these three basic ingredients. Citations to the
literature were chosen to exemplify particular alternatives. They do
by no means present an exhaustive list of work that has been done
in this field.136
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