
A Rule-based Model of a Zombie Outbreak: Insights on the role of 
individual's behavioral adaptation during the spread of a contagious 
disease

Models of infectious diseases have been developed since the first half of the twentieth century. There 

are different approaches to model an infectious outbreak, especially in terms of how individuals and 

their interactions are defined and treated. Despite diverse, most models haven't considered the role that 

individual's emotional factors may play on the population's behavioral adaptation during the spread of 

a pandemic disease. Considering that local interactions among individuals generate patterns that -at a 

large scale- govern the action of masses, we have studied the behavioral adaptation of a population 

induced by the spread of an infectious disease. Therefore, we have developed a rule-based model of an 

infectious disease outbreak, written in Kappa language, and simulated using Guillespie's stochastic 

approach. Our theoretical study of a Zombie outbreak, addresses the specificity and heterogeneity of 

the system at the individual level, a highly desirable characteristic, mostly overlooked in classic 

epidemic models. Together with the basic elements of a typical epidemiological model (SIR), our 

model includes an individual representation of the disease progression and the traveling of agents 

among the affected cities. It also introduces an approximation to measure the effect of panic in the 

population as a function of the individual situational awareness, based on the flow of local and global 

information among agents. In addition, the effect of two possible countermeasures to overcome the 

threat is considered: the availability of medical treatment and the deployment of special agents to deal 

with the disease vector. However, due to the special characteristics of this theoretical model, even 

using exaggerated numbers of countermeasures, only a small percentage of the population survives at 

the end of the simulations. As expected from a rule-based model approach, the global dynamics of our 

model resulted governed primarily by the mechanistic description of local interactions occurring at the 

individual level. As a whole, our model describe how people's situational awareness and behavioral 

adaptation resulted essential to modulate the inner dynamics of the system. Consistent with the spread 

of recent pandemic diseases such as H1N1 and SARS, our simulations show how information moves 

faster than contagion.
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Felipe Nuñez1, Cesar Ravello1, Hector Urbina1, Tomas Perez-Acle1,2,3⇤
1
Computational Biology Lab (DLab), Fundación Ciencia & Vida

Avenida Zañartu 1482,
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Introduction

Zombies are fictitious entities described in tales throughout history as human beings which, through
various methods, have passed from a cataleptic state to a pseudo-life, lacking self control [1, 2]. The
etymological origin of the Zombie word can be traced to the Voodoo cult, in which, according to the
controversial work of Davis [3,4], a cataleptic person -induced by a toxin or venom- could be raised from
the grave by a Houngans (male Voodoo priest) or Mambos (female Voodoo priest) to be turned into
his/her slave. However, the actual and more popular concept is from films of George A. Romero, among
others, in which a zombie is a human a↵ected by a highly contagious disease -typically a virus- that turns
him into a mindless and wandering being with an insatiable hunger for human flesh [5, 6]. According
to pop culture, zombies represent entities that generate social chaos, similar to large scale outbreaks of
infectious diseases, leading to a state of catastrophe, a↵ecting people physical and emotionally [2, 6, 7].
Thus, the imaginary zombie scenario dictates that societies su↵ering an outbreak are inevitably driven to
a loss of control and misrule. In this setting, decisions are taken by considering only local and immediate
information elements regarding the situation to be surpassed, mainly focused on surviving [6, 7]. At
the governmental rank, decisions are taken by considering the general situation and military forces are
often deployed to combat the zombie horde. Additional measures such as quarantine [8] and the use
of weapons of mass destruction [9], are typical approaches exploited in pop culture to try to solve this
menacing problem. In the few situations where treatment is available [8], logistic problems usually disrupt
the e↵ective delivery of treatment to infected people. On the other hand, the topology of connectivity
between cities is not always considered when imposing quarantine countermeasures, nor can they be
su�cient to retain infected people to travel from one city to the other. Moreover, it is always possible,
but less likely, to su↵er from a multiple zombie outbreak, making the quarantine countermeasures even
harder to be sustained. In spite of the desperate e↵orts to combat the zombie horde, these usually win. A
100% e↵ective transmission upon bite, a short incubation period, the uncontrollable desire of zombies to
infect, no cure or remission, and people’s ignorance to deal with such an unexpected situation, together
with a profound emotional outcome, configures a situation where the survival of the human race is a
complex task.

Many infectious diseases have models that describe how they spread on the population, and the case
of a zombie outbreak is not an exception. Munz et al. [10] presented a simple model based on ordinary
di↵erential equations (ODE) with perfect mixing that follows the mass action kinetics, closely related to
classic epidemiological descriptions as the SIR (susceptible - infected - recovered) model [11]. Later on,
Crossley et al. [12] translated Munz model, almost directly without further improvements, to an agent-
based model (ABM). An ABM that considers the heterogeneity of agents and space is an important
step forward to include relevant features commonly overlooked in simpler models. In spite that ABM
simulation o↵ers a set of new possibilities to study a zombie outbreak, it is arguable -philosophically
speaking- that zombies, or even people, actually have an intrinsic purpose [13,14]. To study the influence
that individual behavioral adaptation may impose on the internal dynamics of populations being a↵ected
by the spread of an infectious disease, we have implemented a rule-based model of a hypothetical zombie
outbreak. Our model proposes that individuals a↵ected by catastrophic events, specially zombies, have
no intrinsic purpose and that at a certain scale, the behavior of people -agents in the simulation- follow
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patterns beyond their selves. Considering that agents in a rule-based model should express the inner
heterogeneity of the system, we decided to describe the dynamics of a zombie infection by using a highly
comprehensive tool such as the Kappa language [15]. Kappa provides a formalism to define agents that
interact with each other, according to general rules, through interfaces composed by a set of sites. Each
site always have internal states and can have a binding state, which maps to a site belonging to another
agent. The internal state of a site is a label that indicates a certain local state of the agent. In the
case of our zombie model, the binding states are used to describe encounters between agents during
the simulation and also to represent the progression of di↵erent phenomena, such as infection growth or
distance travelled by agents. On the other hand, internal states are used to say if an agent is a susceptible,
infected, or zombie person, to represent his level of panic, the city where the agent resides, etc. In order to
deal with the combinatorial complexity arising from the heterogeneity of agents, Kappa rules are defined
as patterns representing only the interesting parts of the interactions between agents and/or complexes.
Simulations are performed using the Gillespie’s Stochastic Simulation Algorithm (SSA) [16]. According
to this Gillespie’s based approach, systems to be simulated are defined as a mixture of agents moving
randomly in a given space, generating collisions between them that can lead to an interaction, defined
as a Kappa rule [17]. Using this rule-based model, we have explored the case of a hypothetical zombie
outbreak, by incorporating the basic elements of a typical epidemiological model. We have included
a representation of the disease progression for every infected individual, and a novel approximation to
measure the panic e↵ect in the behavioral adaptation of the population, as a function of the individual
situational awareness. Furthermore, we have included the e↵ect of panic in the movement of people
among infected cities, and the e↵ect of medical treatment and the arrival of special trained forces to kill
zombies. Altogether, this complex scenario allowed us to study the role that emotional factors on the
individual may play on the population’s behavioral adaptation.

Materials and Methods

Following the zombie pop culture and the classical SIR model of infectious diseases [11], we can define
a zombie (Z) as the vector of an infectious disease. Z is a person that is capable of transmitting the
disease to susceptible individuals (S) but, on the contrary of asymptomatic vectors, they also expresses
the disease symptoms. For the infection to occur, an S must make direct contact with body fluids of
Z [2], so, there must be an encounter that results in the defeat of S, typically manifested as S being bitten
by Z (Fig. 1). The actual disease is usually defined by three stages [2, 5, 6]. The first stage is infection
(I ) that represents the incubation period and is characterized by an asymptomatic phase followed by a
rapid decay of health. The second phase is characterized by a death-like state (D), where the infected
individual has no apparent vital signs but is su↵ering deep physiological and probably genetic changes
induced by the pathogen. These set of changes forces to that individual to rise as Z, the third and final
phase of the disease. The transformation of an asymptomatic I to Z could be accelerated by another
zombie attack: if I is bitten by Z, it immediately becomes D.

On the other hand, an encounter with Z could end in a victory for S, or I, by somehow destroying
Z, which turns it into a Removed (R), i.e. a person definitively dead in the sense that R cannot rise
as Z again. The R state is also reached by persons that died from circumstances that do not directly
involve the e↵ects of the disease, such as accidents and other natural causes. Another source of R are
D individuals that have been prevented from becoming Z, either by the action of S or I, or by being
completely eaten by Z. Finally, Z individuals become R after a long period of starvation.

To try to overcome the outbreak, we have included some individuals specialized in the removal of Z,
called Exterminators (E ), which are deployed at di↵erent times after the outbreak. Just like any other
person, E individuals can get the disease, but they turn into a infected exterminator (Ei) instead of just
I, retaining their abilities to kill Z more e�ciently. Later on, just like I, Ei turn into D and follow the
aforementioned disease phases. We have also included treatment units T that may, upon consumption,
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prevent the transition from I and Ei to D, by turning them back into S and E, respectively.
In trying to address the e↵ect of the psychological factor, namely panic, we defined that a person

has three mental states. A higher level represents a person moving faster influenced by panic, so this
person has a higher chance of an encounter, either with another person (S, I, E or Ei) or with a Z, also
having fewer chances of defeating Z or obtaining T , due to diminished decision-making capabilities. A
person can change its own mental state according to the situational awareness, for example, through an
encounter with Z and E, or with another person. In an encounter with a Z, the person will increase
the level of panic if he/she becomes infected, or decrease it if he/she destroys Z. In encounters with
persons with a higher level of panic, the panic will increase. Someone with a high level of panic can
spread the panic, but a person with a low level of panic cannot calm down others. If a person in the
lowest mental state (p1 ) encounters an E, this person will increase his/her mental state to level p2, but,
if his/her mental state previous to the encounter is at level p3, his/her mental state could decrease to
p2. The assumption behind this scheme is that an unaware person that suddenly encounters military
personnel, would become worried, while conversely, a person in a state of panic would certainly become
calm by feeling more protected. Also, an I may increase his/her level of panic as the symptoms become
apparent, while an S may calm down spontaneously, given enough time without encountering with Z or
other persons in panic. We also included in our model an additional level, the zero level, that represents
a fixed cold mind state that is achieved through previous successful experiences defeating Z. In this state,
a person has more chances to survive an encounter with a Z, producing at the same time less encounters.
People in level zero may calm down people with higher levels of panic. E agents are supposed to be
trained to control their fear and panic, so their mental state does not change in the model throughout
the simulation.

Finally, looking for the description of large-scale problems, the model is extended into various com-
partments that represent di↵erent cities where people are able to travel (Fig. 2). On the contrary of S
and I, Z and E cannot travel between cities. As E individuals are specifically assigned to each city, they
stay where they were deployed during the simulation. Despite Z can move freely inside cities, they are
not capable to interact with transporting agents (see below) during the simulation.

Implementation

Given the complexity of the described model, the implementation in Kappa is not straightforward. We
have defined an agent Person, used to represent S,I,D,Z,E and Ei individuals. To distinguish them, the
Person agent has a site named c (class) whose internal state can be either one of the values s,i,d,z,e or
ei, as seen in Fig. 3 (Panel A). Each Person also has a site i to interact with the i site of other persons,
a site p to define its level of panic, a site l to define its location and a site v where to bind the virus after
infection. All the interactions between agents involve the formation of complexes, thus changes in state
of sites can only occur after the complex is formed. The separation of complexes occur spontaneously,
independent of wether a reaction was executed or not. Moreover, there could be instances of two or more
successive changes in the same complex, before separation takes place.

The infection process involves various changes in the S-Z complex, as seen in Fig. 3 (Panels B and C).
Upon infection, the c site’s internal state of the Person changed from s to i, a Virus agent is bound to
its v site and its panic rises one level (from p1 to p2 or from p2 to p3). As a consequence of the preceding
changes, the complex is separated so the result is a Z , free to interact with another Person, and an I
that will begin to develop the disease. The disease progression is represented as the growth of a chain of
Virus. When the growth of this chain reaches a certain length n, the infected Person dies. It is important
to note that these viruses are not meant to represent the progression of actual viruses in a host organism.
On the contrary, this implementation is to avoid the exponential behavior of the interactions due to the
SSA and to model the incubation period of an infectious disease, a process that di↵er largely from the
mass-action regime. If the rate of replication of the virus � is constant, we can consider that the infected
goes through many phases according to the length of its chain of viruses, so the expression of the disease
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is given by:
I

0
1(t) = ��I1(t)
I

0
i(t) = �Ii�1(t)� �Ii(t) 1 < i < n

I

0
n(t) = �In�1(t)
I1(0) = C0

Ii(0) = 0 1 < i  n

(1)

Solving that system we can obtain an expression for In(t):

In(t) = C0
(�t)n�1

e

��t

(n� 1)!
(2)

Then, the amount of infected persons in every time t is determined by:

I(t) = C0

n�2X

k=0

(�t)k e��t

k!
(3)

So if we want to model an incubation period of about a to b hours with an 80% of the infected
expressing the disease in that timespan, then we solve equation 3 to find the � and n to satisfy:

I(a) = 0.9C0

I(b) = 0.1C0
(4)

A similar approach was followed to implement the duration of travel among cities. We defined a
Carrier that binds to a Person and to a Kilometer that replicates forming a chain. The journey is
completed when the chain of replicating Kilometer reaches a certain length. In addition to the interaction
sites with Person and Kilometer, Carrier has also a site to define its city of origin and another one to
define its destiny. Therefore, the length and replication rate of Kilometer accounts for the duration of
the journey. On the other hand, the number of Carrier agents of each origin/destiny pair accounts for
the capacity of each road, proportional to the number of lanes in each direction.

The e↵ect of treatment also involves replicating chains. When a T is consumed by an I or an Ei, an
Antibody is bound to the first Virus of the chain. The Antibody chain grows in parallel to the Virus chain.
If the Antibody chain reaches the same length than the Virus chain before the Virus reaches the critical
length n, then I is cured, returning to their original state S (or E, respectively). Again, as mentioned
before, the chain of replicating antibodies are not meant to represent the actual immune process of an
infected host. Is important to note that T units, as well as E, are added to the system as perturbations,
i.e. they are introduced arbitrarily at a fixed time after the simulation has started.

The whole model results in a simulation system that contains 418 rules, composed by 6 di↵erent types
of agents that, by recombination of their states of its sites, may form 1096 di↵erent species. These species
are representing each possible element of the model, and in turn they can form a number of di↵erent
complexes that cannot be accurately determined, exceeding 108. An example of such complexes would
be the following pattern:

Person(c~i,v!1,i,p~p3,l~c5),Virus(prv!1,nxt)

which stands for a Person in the Infected state, bound to a Virus agent, not interacting with any other
Kappa agent, who has a level 3 of panic and is located in city 5.

Parameters

In addition to rules, the other important part of the model are the stochastic rates that allow the theo-
retical model to fit to available data. One of the essential parameters in our model is the encounter rate
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between two persons in the basal level of panic, p1. This parameter governs the formation of complexes,
so it influences many of our system’s interactions. Considering cities with an average population density
of 8700 persons per squared kilometer (see Simulations), we defined an average baseline of 10 encounters
per day per person. This value is then used to define other encounter rates by multiplying it by di↵erent
factors, accounting for the distribution rate of di↵erent interactions. Another important parameter is the
rate of the resolution of each encounter, that has two parts. The first part is the rate that accounts for
the duration of the encounter which, in most cases, follows an exponential decay law. The second part
gives the probability to obtain each possible outcome. By multiplying these two parts, the total rate of
encounters shows the expected average duration of 10 minutes for S-Z encounters, and 5 minutes for E-Z
encounters. The output of these encounters exhibit ratios distributed proportionally to their respective
probabilities.

The last important parameter is the panic constant, defined equal to exp(1), that a↵ects the reaction
rates involving persons with propensity to increase their panic. To reflect that the panic level of persons
involved in a reaction a↵ects the rate of that reaction, we multiply the rate of this reaction by the panic
constant to the power of the panic level of each Person minus one. This is also applied to define the rate
of encounters between a Person and a Carrier. On the other hand, in case of the encounter of a Person
with T, the situation is the inverse, i.e. we multiply the rate of this reaction by the panic constant to
the power of one minus the panic level of each Person. The following Kappa-like notation exemplifies the
encounter of an S with a Z (first interaction), the encounter of an S with an I (second interaction) and
the encounter of an S with a Carrier (third interaction).

Person(c~s, i, p~p2, l~c3), Person(c~z, i, l~c3) -> \

Person(c~s, i!1, p~p2, l~c3), Person(c~z, i!1, l~c3) @ ’encounter-rate’*’panic’^1

Person(c~s, i, p~p3, l~c3), Person(c~i, i, p~p2, l~c3) -> \

Person(c~s, i!1, p~p3, l~c3), Person(c~i, i!1, p~p2, l~c3) @ ’encounter-rate’*’panic’^3

Person(c~s, i, p~p1, l~c5), Carrier(i, k, o~c5, d~c6,) -> \

Person(c~s, i!1, p~p1, l~c5), Carrier(i!1, k!2, o~c5, d~c6), km(p!2, o~c5, d~c6) \

@ ’carrier-encounter-rate’*’panic’^0

In general, the interaction rate f of an encounter is a function that depends of the rate constant and
the panic level, as follows:

f(r, p) =

⇢
r

Qn
i=1 exp(1� pi) in encounter withT

r

Qn
i=1 exp(pi � 1) all other encounters

(5)

Where, r is the rate to be modified and p = (p1, p2, . . . , pn) is a vector with the panic level of each
Person, a↵ected by panic, in the left hand side of the reaction.

As stated before, the panic level also a↵ects the outcome of encounters. For panic levels 1, 2 and 3, a
70%, 80% and 90% of the encounters are won by Z, respectively. On the other hand, S elements in the
level 0 of panic are defeated only in the 40% of the encounters. E units are added as perturbation to
the system to destroy the threat, so they generate more encounters with Z. This is reflected in a reaction
rate 54 times higher than the encounter rate of non-especialists Person agents with Z. Moreover, the
probability of an E winning the encounter is equal to 90%.

The rate of replication of the virus, �, is obtained by solving equation 4 to an incubation period of
8 to 16 hours [2], which gives an n equal to 13 and a � of 23.4880. On the other hand, the response
to treatment is set to a replication rate 26 times higher than �. Furthermore, the transport process for
Carriers is particularly fitted to each pair origin/destiny by equation 4 as the expected travel duration
between cities at speeds ranging from 50 to 150 Km per hour.
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As we represent a hypothetical situation very close to a catastrophe, the accidental deaths, a↵ecting
S and I, are defined according to an exponential decay law that is fitted to an average death rate of one
percent per year. E and Ei units may also have accidental deaths but, since it is assumed that they are
prepared to confront a chaotic situation, their rate of accidental death is around 9 times lower. Moreover,
we assume that a Z can die after a certain time by starvation, therefore, an exponential decay reaction
is fitted so that 90% of Z would be dead after 28 weeks [18].

Kappa file

Even though Kappa allows the definition of an important number of universal rules, i.e. unique rules
that apply for every city within our system, our model establishes several rules that apply in specific
situations. For instance, while the elongation of the virus and antibody are universal rules, the kinetic
rate of bimolecular interactions such as the encounter between an S and a Z depend on the area of each
city (Fig. 2). So, the need for a written rule for each di↵erent reaction becomes apparent. This issue
leads to a Kappa file with more than 700 lines of code for models composed by only 10 cities and 11 pairs
of connected cities. To facilitate the task of writing and editing a complex model such as a hypothetical
Zombie outbreak in Kappa, we defined a Kappa-based syntax to express groups of location-specific rules
in a compact way. We call this intermediate language Prekappa and we wrote and actively maintain a
python script that reads a Prekappa file and expands it to a formal Kappa file.

Understanding Prekappa is straightforward after the examination of a few examples. Primarily, one
defines the locations or compartments that will be modeled within the system as follows:

%loc: c1 0.5

%loc: c2 0.6

...

%loc: c0 0.8

where c1...c0 are the location names, which will be used as internal states for the l (location) site, and the
following vector of numbers can have an arbitraty meaning. In this case, the number after the location
name correspond to the area of each location relative to location c5.

In the following instructions, the modeler writes only one line that will be properly expanded to one
line for each location in a list of locations. Lists of locations can be created by:

%locl: Zone1 c1 c2 c3

being the name all reserved to refer to the whole set of locations previously defined. For example, to
write the rules of an encounter with a Z applicable to all the cities, we use:

%expand-rule: all Person(c~s, i, p~p1),Person(c~z, i) -> \

Person(c~s, i!1, p~p1),Person(c~z, i!1) @ 10 / %loc[0]

and it will be expanded to formal Kappa syntax as:

Person(c~s, i, p~p1, l~c1),Person(c~z, i, l~c1) -> \

Person(c~s, i!1, p~p1, l~c1),Person(c~z, i!1, l~c1) @ 10 / 0.5

Person(c~s, i, p~p1, l~c2),Person(c~z, i, l~c2) -> \

Person(c~s, i!1, p~p1, l~c2),Person(c~z, i!1, l~c2) @ 10 / 0.6

...

Person(c~s, i, p~p1, l~c0),Person(c~z, i, l~c0) -> \

Person(c~s, i!1, p~p1, l~c0),Person(c~z, i!1, l~c0) @ 10 / 0.8
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As seen, the use of Prekappa allows us to declare a set of rules, even with di↵erent rate constants, in a
single expression. In addition to locations lists, location matrices can be defined as:

%locm:

TM c1 c2 c3 c4 c5 c6 c7 c8 c9 c0

c1 00 06 00 00 00 00 00 00 00 00

c2 06 00 15 00 25 00 00 00 00 00

...

c0 00 00 00 00 00 00 00 15 06 00

where TM is the matrix label and the cell values may have any arbitrary meaning. Location lists
and location matrices may be used to expand any Kappa expression: signature definitions, rules, init
statements, and variable declarations, including support for perturbations. So, TM is used to declare the
signatures of our Carrier agents and their initial number as follows:

%expand-agent: TM Carrier(i,k)

%expand-init: TM %cell Carrier()

which results in:

%agent: Carrier(i,k,o~c1~c2~c3~c4~c5~c6~c7~c8~c9~c0, \

d~c1~c2~c3~c4~c5~c6~c7~c8~c9~c0)

%init: 6 Carrier(o~c1,d~c2)

%init: 6 Carrier(o~c2,d~c1)

%init: 15 Carrier(o~c2,d~c3)

%init: 25 Carrier(o~c2,d~c5)

...

%init: 15 Carrier(o~c0,d~c8)

%init: 6 Carrier(o~c0,d~c9)

It is important to note how the expansion of the init statements skipped the cells having values equal
to zero in TM. The whole matrices can be expanded, indistinctly of their cells’ values, by adding the
flag --full-matrix to the command line when using the expander script. Finally, a shortcut for writing
chains of agents was defined so that a chain of, say, 10 kilometer agents could be abbreviated as follows:

km(n!2),km(p!2,n!3),...,km(p!10)

and then expanded as:

km(n!2),km(p!2,n!3),km(p!3,n!4),km(p!4,n!5),km(p!5,n!6), \

km(p!6,n!7),km(p!7,n!8),km(p!8,n!9),km(p!9,n!10)

The use of prekappa has dramatically reduced the size of our working files, from almost 1000 lines of
code to less than 300. Our expander tool is available at https://github.com/DLab/expander. Both,
the prekappa file and the resulting expanded Kappa file, can be reviewed in the Supplementary Material.

Simulations

Simulations were run using KaSim version 1.08 [19]. KaSim implements the Gillespie’s Stochastic Sim-
ulation Algorithm (SSA) to solve a possible trajectory of the system’s stochastic master equation [16].
According to Gillespie’s approach, systems to be simulated are defined as a mixture of agents moving
randomly in a given space, generating collisions between them that can lead to a reaction (interactions in
our case) defined as a Kappa rule [17]. Simulations were performed on the Levque cluster of the National
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Laboratory for High Performance Computing (NLHPC), Center for Mathematical Modeling (CMM),
Universidad de Chile.

The simulation process was separated in two main parts. The first part was performed to determine
the behavior of the system without countermeasures, namely E and T (from now on, the Basal Scenario).
To do so, 1000 repetitions of the basal scenario were performed. These simulations were initiated with a
total population of 53490 agents, spread proportionality to the area of each city (Fig. 2), corresponding
to a population of near to 6 millions in a metropolitan area of 690Km

2 (similar to Santiago de Chile). To
trigger the disease outbreak, 4 Z elements were included in city c1. On the average of these simulations,
we determined the critical times in which simulations reached the threshold of 5% of I, to send the T

units, and the 5% of Z, to send the E units, relative to the population of each city.
To conduct the second part of the simulation process, 1100 tries of 25 scenarios were simulated, defined

by a combination of di↵erent E and T units to be sent to each city. Deployed E units were equal to 0.5%,
1%, 2%, 4% and 8% according to each city population, while dispatched T units were enough to cover
the demand for treatment of the 30%, 40%, 50%, 60% and 70% of the population, respectively (Table 2).
Each scenario was simulated for 300 days with the same initial conditions than the basal scenario. From
these results, the simulations that exhibited representative results were considered for further statistical
analysis.

Due to the intrinsic stochasticity of the trajectories, each scenario was analyzed using scripts in R
language [20].

Results and Discussion

From the set of 1000 simulations of the basal scenario, in 974 the infection went on until complete
elimination of the population. These simulations were considered as the representative ones. In the
other 26 simulations the threat was neutralized early, without reaching a pandemic scenario (data not
shown). Since one of the main goals of this work is the study of the dynamics occurring in a set of
cities su↵ering from a catastrophic event, those 26 simulations were not considered for further statistical
analysis. The average behavior of the other 974 simulations was used to determine the critical times to
send the countermeasures, as shown in Table 1. Those resulting times were consistent with the topology
of the cities displayed in Fig. 2, in which the threat spreads from the nearest to farthest city with respect
to the outbreak city (c1). Furthermore, for every city, the critical day to send T units resulted lower
or equal to the time to send E units, which is consistent to the incubation period of the disease (see
Parameters).

Table 2 shows the probabilities to overcome the disease as the ratio of successful simulations for each
scenario, i.e. those in which there are not infectious elements, namely I,D,Z and Ei, at the end of the
simulation. Analyses performed on this data show that regardless the number of available T units, the
inclusion of 0.5% of E is not enough to overcome the threat. The same can be seen in the scenario
with 30% of T and 1.0% of E. Meanwhile, from 40% to 70% of T and 1.0% of E, some successful
simulations can be found. The first combination from which the situation becomes favorable is 30% of T
and 8.0% of E, because a higher than 50% probability to overcome the disaster was obtained. However
successful, population survival in those simulations resulted quite low, as can be seen in Table 3, shown
as a percentage relative to the total initial population.

Table 3 presents the average percentage of survival S with respect to the initial population at the end
of each successful simulation (Table 2). As seen, survivors are scarce compared to the large amount of
invested resources to rescue the cities from the zombie threat. Surviving S vary from 0.23% to 6.30%,
when 40% T and 1% E, and 70% T and 8% E, were included in the simulation, respectively. The scenario
with 30% of T and 8% of E was selected for further analysis. This scenario shows a survival expectation
of 3.75%.

As seen in Fig. 4, inset of panel A, S elements present a short time without apparent change until day
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3, followed by a quick decay, that stabilizes near to day 13, reaching only 3.75% of the initial population.
On the other hand, the average trajectories of I and Z present several breaks that correlate with the
addition of T and E countermeasures, as shown in Panel A. In the case of the Z trajectory, breaks are
notorious at days 4, 5, 6, 7, 8 and 9, being the highest at day 9 when the last 2 cities were intervened, as
shown in Table 1. The trajectory of I, followed by the trajectory of D present smoother breaks at critical
days from 3 to 8.

Figure 4, Panel B, shows the total panic level of the simulation. As seen, panic level p1 start to decrease
almost at the beginning of the simulation while, at the same time, panic level p2 start to increase at day
1 of the simulation. Notoriously, panic level p3 start to increase at the mid of day 1, correlating with the
appearance of I as seen in Panel A. Thus, the peak of panic level p3 strongly correlates with the maximum
number of I (Panel A). The lag shown in the trajectory’s decay of S (inset Panel A) is correlated with
the increase of the panic level p2, during the first three days. Inset of Panel B shows the marked growth
of the special panic level p0, reaching about 80 agents at the same time when the number of S (inset
Panel A) and I (Panel A) reaches their minimum levels.

As seen in Fig. 4, Panel C, the number of free Carriers is stable from the beginning of the simulation
until the mid of day 1, correlating with the appearance of panic level p3. In accordance to this correlation,
the number of free Carriers reaches its minimum at a time when panic level p3 becomes relevant compared
to panic levels p1 and p2.

Taking into account that the system’s global behavior emerge from the superposition of the inner
dynamic of each city, we analyzed the average trajectories of some agents present in city c5 (Fig. 4,
Panels D to F). As seen in the inset of Panel D, a marked lag in the trajectory of S occurred from
the beginning of the simulation until day 4, at a time when a rapid decay in the number of S reach its
minimum at day 10. This decay also correlates with the increase of panic level p0, as seen in the inset of
Panel E. The rapid decay in the number of S, also strongly correlates with the appearance of I elements,
as can be seen in Panel D. As before, the trajectory of I is followed by the trajectory of D. On the
other hand, as seen in Table 1, T countermeasures were added at day 6, meanwhile at the same time,
E elements were included in the simulation. These set of perturbations around day 6 produces a clear
break in the tendencies of Z and I (Panel D). The trajectory of Z respond instantly to the arrival of E
while the trajectory of I present a certain delay with respect to the arrival of T, as seen in Fig. 4, Panel
D. The dynamics of S, I, D and Z was mainly developed between days 4 to 9, showing afterwards a rapid
decay of S until its stabilization at a minimum level at day 9.

When analyzing the panic behavior in city c5, its dynamics resulted clearly circumscribed between the
beginning of the simulation, until day 10. From this day and on, no further changes in the level of panic
was detected, as can be seen in Fig. 4, Panel E. Panic level p1 experienced no changes until reaching
day 2, followed from that point by a marked increase in panic level p2. The permanence of the majority
of the population in panic level p2 is short -only 2 days- because at day 4, panic level p3 raises as the
predominant panic level of the population. Notoriously, changes in the panic level of the population that
occur before day 4, proceed in absence of I, D and Z, as seen in Panel D. Around day 5, the appearance
of panic level p0 resulted closely correlated with the maximum of panic level p3, as seen in the inset of
Fig. 4, Panel E. The maximum number of Persons with panic level p0 reach to 14 elements at day 8.
The countermeasures e↵ect on the panic level is reflected by changes in the trajectory of panic level p2
at day 6, corresponding to the same day were T and E elements were added to the simulation.

Figure 4, Panel F, presents the trajectory of the number of free Carriers for city c5 during the
simulation. As shown, the number of free Carriers remain stable, showing a basal rate of occupancy,
from the beginning of the simulation until day 2. From day 2, a marked decrease in the number of free
Carriers occurs until day 5, reaching its minimum number in the same day than the maximum of panic
level p3 (Panel E) and the beginning of the rapid decay in the number of S, as seen in the inset of Panel
D.
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On the general assumptions of our model

In spite that a zombie outbreak is a very unlikely situation, we decided to choose this model because of
its resemblance to the spreading of infectious diseases in human populations. Moreover, the nature of
this model gave us the ability to freely choose simulation parameters. According to popular mythologies,
a zombie outbreak should impose a situation where people behave very unconventionally, being guided
mostly by their panic, heavily focused towards personal survival, obeying population patterns beyond
themselves. In such an event, people’s situational awareness should be a key element to modulate the
internal population dynamics. Following this idea and to study how the internal dynamics of this catas-
trophic scenario can be a↵ected by people’s panic, the ODE model in Fig. 1 is extended beyond the
instantaneous change of the states regulated by a reaction rate. To do so, we considered all the possible
outcomes for every encounter and their appropriate reaction rates. Therefore, the infectious process has
two parts: the formation of the encounter and its resolution. Subsequently, we needed to estimate two
parameters to adjust the model: the duration of the encounters and the chance of every possible out-
come. These two elements are related in our model in order to define as many reactions as the number of
possible outcomes from two interacting agents, as depicted in Fig. 1. By defining each rate as a function
of the duration of the encounters, we can directly use the probability of each outcome and therefore, the
resultant elements will be produced in quantities proportional to these probabilities. In our simulations,
the number of e↵ective encounters among agents was estimated as 10 per person per day, emphasizing
that the encounter must be equivalent to a direct contact, strong enough to allow the transmission of the
disease. Moreover, the duration of the encounters was defined as 10 minutes, except for the encounters
involving E units that span half that time to reflect the assumption that they are more e↵ective in deal-
ing with zombies. On the other hand, for the resolution of an encounter we must define a probability
of contagion of the disease which, in our model, corresponds to the probability of losing a confrontation
with a zombie. This parameter was set at 70% for S and I, while E units have only a 10% chance to
lose. This aims to reflect the lower capacity that people would have to react to the situation due to
lack of preparation and the absence of countermeasures, which in turn, triggers a catastrophic scenario
due to higher chances of getting the infection, before neutralizing the immediate threat. Interactions
between people follows a similar mechanic of encounter-resolution but, in these cases, the resolution is
separated in two steps: changes in the interacting agents and their subsequent separation. This gives rise
to di↵erent possible outcomes from an encounter such as the occurrence of more than one reaction in the
same complex or the separation of the complex without any change. These kind of three-step reactions
are used in our model mainly to describe the spread of rumors and the encounters of civilians with special
forces (E units), both related to consequent changes in the level of panic.

The e↵ect of panic on the internal dynamics of our model follows, as mentioned before, the notion
that during catastrophic situations, mass or herd behavior is more determinant than the capacity of orga-
nization or rational decision-making. Specific values determining how panic a↵ects the rate of reactions
were arbitrarily defined. However, they allowed us to rise or diminish those rates independently for each
person depending on his/her emotional state, in contrast to a general approach that could change those
rates for the whole system, yielding a richer system that accounts for more specificity and heterogeneity
of the subjects. This is a highly desirable characteristic for epidemic models in which the heterogeneity
of the susceptible population is a key element to be considered [21].

In order to account for the individual disease progression, we decided to model in Kappa the viral
replication as seen in Fig. 3. A priori, this implementation could increase the number of reactions and
thus the computational requirements in a futile way. However, it is important to consider that a key
factor to trigger a pandemic is the asymptomatic phase that renders travel restrictions and quarantine
measures useless or inapplicable. Thus we decided to include an incubation period during which any
infected person can travel freely between the cities encompassing our model. Even though the resolution
of Equation 4 has nor biological neither epidemiological meaning regarding the number of elements needed
for the expression of the symptoms, it allowed us to use a more precise adjustment to empirical data.
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As mentioned before, the mechanism of treatment involves the replication of Antibody agents and has no
relation with a real immune response. However, the resulting infective dynamics reflects a diminished
e↵ectiveness of the treatment, as the disease is more advanced, allowing us to control the time required
to heal and the average e↵ectiveness of treatments.

Regarding transport among cities, the use of Carrier agents instead of a simple di↵usion model of
persons, allowed us to limit the maximum rate of travelling to reflect the finite transport capacity of a
highway. This limitation was set to define a system susceptible to collapse if too many people wanted to
travel, as in the case of the spreading of panic in catastrophic situations.

On the use of the Kappa language

By looking at the local model shown in Fig. 1, it would be expectable to solve it by traditional methods.
However, this representation is the simplest way to explain the context and basic considerations of our
model, without dealing with the rich set of details that a rule-based model could express. Starting
from the basic model of Fig. 1, our model was enriched by incorporating the description of the disease
progression for every individual together with an approximation to model the e↵ect of panic on people,
giving rise to a complex system that would need more than 5700 variables to define the possible states of
persons and their interaction with others, even in the same compartment. Interestingly, the number of
variables needed to solve our system increase linearly with the amount of cities involved. So, although it
would be possible to numerically solve such a large system, our main goal by using Kappa was to reduce
the complexity of the implementation without losing expressivity and the inherent richness of our model.
In addition to use a mass-action based model, treating the basic elements instead of the observables at
a large scale, we needed a mechanistic approach such as rule-based model. On the other hand, under a
Gillespie’s approach, one must assume that the entities modeled are evenly distributed in space, so each
compartment of a simulation -a city in our model- represents a well mixed reactor. To assume that the
population of a city is evenly distributed may seem over simplistic, however, many of the approaches to
model populations, such as ODEs, widely used in epidemiology and other sciences such as ecology, make
the same assumptions yielding useful results [22, 23]. Altogether, our model gave us a detailed view of
the system at an exceptional level of granularity: the individual. In addition to deal with such a level of
granularity, Kappa allowed us to treat the combinatoric complexity by using patterns as generalizations
of rules, significantly reducing the number of rules needed to describe the system. By implementing our
Kappa expander, the complexity of expanding Kappa rules to a pseudo-explicit space, resulted in a simple
task that allowed us to easily explore di↵erent and larger scenarios.

On the results of our model

By using SSA, the result of a simulation of a Kappa model is one possible trajectory of the Stochastic
Master Equation that describes the system, seen as a set of reactions [16]. This represents a possible time-
course for the evolution of the system given a certain set of initial conditions. Due to the stochasticity
inherent to the SSA, the expected behavior of elements must be estimated from the average of many
simulations. The initial set of simulations consisting in 1000 repetitions of the basal scenario, achieved
two goals. The first was to determine, on the basis of the intrinsic properties of the non-intervened model
-i.e. basal scenario-, the critical times to send the countermeasures to each city. Secondly, allowed us to
determine the number of simulations in which the threat was overcome before reaching a pandemic state.
This situation arise as a consequence of the stochastic nature of the SSA simulation. The random outcome
of the encounter between S and Z, combined with a very small number of initial cases of the disease,
gives a 1% chance of obtaining this outcome. We obtained 26 of these results from 1000 simulations,
which can be expected given the chances, rendering its deletion from the results as valid.

By analyzing Table 1 one can notice the speed of the spread of the disease through the set of cities,
observing the presence of Z in every city by day 9. It is interesting to note that even though the vector
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of the disease does not have the ability to move between cities, the fact that the infected can travel is
enough to trigger a pandemic event.

The definition of the critical times rises from the need to reduce the complexity of determining the
best set of countermeasures that allow to overcome the catastrophic episode. Clearly, the variables to set
are the optimal quantities of T and E and the times to send them, with the ability to set more than one
time independently for each city. However, in the present work, we opted to fix the times and setting
only one per city, to only focus on the e↵ect that the quantities have over the outcome of the tries, as a
function of the percentage of the of the initial population. The results in Table 2 can be interpreted as
the probability of success of each scenario. It is clear that the value of the probability could be refined by
considering a larger number of repetitions, but we decided to establish an average result that, first, was
consistent with the aforementioned assumptions and secondly, with an adequate precision, while trying
to keep computation times at reasonable level. The second of these requirements is the easier to support,
given that by analyzing Figure 4 it is possible to note that the standard errors follow closely the average
of the trajectories during all the simulation timespan.

The consistence of our results is supported by the di↵erent behaviors seen in Fig. 4. First, the disaster
triggered by the addition of a small number of zombies to the system has a large magnitude, decimating
the population to a 3.75% of the initial value (Table 3). A disaster of such magnitude, as expected, a↵ects
people physically and emotionally, generating chaos. This can be seen in the trajectories of the levels of
panic, that presents a clear succession of the levels. This pattern shows a clear relation with the course of
the pandemic, as seen by comparing panel A and B of Fig. 4; day 5, has most of the people at panic level
3, and it is the time at which the slope of the decay of susceptibles becomes steeper. The mental state of
the population also a↵ects the occupancy of Carrier agents, as seen in panel C of Fig. 4. The amount of
free Carriers remains steady for a short time around 80 units, and starts to decay to a minimum of 30
as the number of people in higher levels of panic rises. This means that, as panic rises, more people is
trying to travel. Finally, the amount of carriers rises again, possibly because there are fewer survivors to
use them.

Conclusions

By using as toy model a hypothetical zombie outbreak, this work was mainly focused in getting insights
on the role that emotional factors may play on the population’s behavioral adaptation, during the spread
of a pandemic disease. To do so, we have implemented a rule-based model where the behavior of agents
depend on their internal state of panic, measured as a function of the situational awareness. To date,
many models studying the spread of infectious diseases assume that the population will not change its
behavior in response to a disease outbreak [24,25]. However, understanding the influence of populations’
behavior on the spread of infectious diseases is key to plan, apply and improve any control measure [25,26].
Systematic studies have demonstrated that public health measures such as school closures and quarantines
actually produce behavioral adaptation [27, 28]. Despite centralized measures may force changes on the
population’s behavior, is important to consider that people may also experience self-induced changes.
During the spread of infectious diseases it is common to observe actions aimed to reduce the risk of
infection or to, at least, increase people’s sense of security [29]. Changes in the behavior of people to
prevent sexually transmitted infections confirm that this is the case. An interesting example of this
behavioral adaptation can be traced to the beginning of the 90’s when the Gay population changed
dramatically their sexual behavior because of the discovery of HIV [30]. Interestingly, risky behaviors
in some communities have arised, as a result of recent studies demonstrating that a combined antiviral
therapy for HIV can be used as a profilactic measure [31]. During the SARS outbreak in 2003, people
in Singapur and Hong Kong dramatically reduced travelling, weared mask in public and avoided contact
with other people. According to this evidence, modeling approaches that doesn’t consider the e↵ect of
emotional factors during the spread of an infectious disease, seems to be unable to capture the whole
dynamics of the population. Thus, the comprehension of the underlying dynamics of the spread of an
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infectious disease in human populations, requires the understanding of the behavioral adaptation of both,
the individual and the population being a↵ected [25,30,32]. As noted, during the spread of a contagious
disease, people’s behavior is modified producing changes in their contact network. In consequence, it is
expected that basic models implementing static contact networks will produce inaccurate predictions [32,
33]. In order to overcome this limitation, our rule-base model incorporates a dynamical contact network
that is generated throughout the simulation by the application of the Guillespie’s SSA. The stochastic
nature of this algorithm implies that this network can not be predicted from the initial parameters of
the simulation. Moreover, the contact network of every agent is generated by its e↵ective interactions
through time.

In trying to address the e↵ect of emotional factors, we were not focused on defining panic, rather,
our motivation was to model how situational awareness, or information, may flow during the spread of
the disease. This approach follows the idea that panic may be defined as a particular form of collective
behaviour occurring in catastrophic situations [26]. Interestingly, information di↵usion may influence
individual’s behavior producing or demnishing panic and also reducing the prevalence of infection if
individuals avoid it or seek treatment earlier [34]. In order to incorporate these evidence in our simulations,
S agents in panic level p2 or higher may use treatment without being infected, diminishing the number
of available treatment to I and Ei agents. Again, by doing so, we have included in our simulations
a behavior that depends on the individual situational awareness, but producing global e↵ects on the
population. Despite some models assuming local clusters of information [35], the vast majority assume
that the information on which people change their behavior, is available to everyone [24, 32, 36]. On the
contrary, in our model, information is taken from a mixture of the social and spatial neighborhood in
which agents are immersed (local information), while information from other locations is obtained due to
agents’ traveling (global information). Although classical Kappa-based models assume that the system’s
dynamics occur in a well mixed reactor, we have extended this interpretation to model a reactor composed
by di↵erent reaction chambers, or cities in our simulations. In addition, we have included information
regarding the connectivity and the transportation system among cities, as has been successfully applied
to other models to study disease spreading [37, 38]. Unlike other models that study the influence of
individual-based information [39], information availability to agents in our model, depends on the history
of contact among agents during the simulation. Thus, behavioral adaptation for every agent will depend
on the flow of both local and global information in a very unstructured manner. Interestingly, in socially
or spatially structured models, information can occur in clusters which in turn can have strong e↵ects
on disease dynamics [35]. In september 1994, an outbreak of pneumonic plague was reported in the
city of Surat in western India [40]. As a result of the highly unstructured information coming from
unaware people, enhanced by the role of the media coverage [41], a panic explosion occurred in the Surat
population. During a weekend, hundreds of thousands of persons fled away producing chaos and a huge
number of casualties. Although later on, some cases were serologically confirmed as plague, the amount
of human casualties largely surpassed those who died because of the disease.

In addition to address the role of information flow, we have evaluated the e↵ect of typical countermea-
sures of the zombie pop culture, considering the influence of a pseudo-explicit space where the population
dynamics occurs. Considering that a zombie infection represents the spreading of a disease with a 100%
e↵ective transmission, a short incubation period, no cure or remission, together with a profound emo-
tional outcome for people being a↵ected, the disease control is a highly complex task. Our simulations
show that, under these circumstances, the population survival requires all, the availability and early
dissemination of some treatment and the intervention of central authorities to control the disease spread-
ing, by applying quarantines measures, and by eliminating the disease vectors. As expected from our
implementation, the global dynamics of the infection progression on the population resulted primarily
governed by the mechanistic description of local interactions. Notoriously, people’s situational awareness
resulted essential to modulate the inner dynamics of the system. These findings support the notion that,
at least for pandemics with similar characteristics to this zombie outbreak, information moves faster
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than contagion. As demonstrated by pandemic episodes like SARS and, more recently, H1N1 (avian flu),
governments and authorities should make extensive e↵orts to improve the situational awareness of the
population being a↵ected. These e↵orts should not imply information restriction. On the contrary, an
early aware population will be capable to react both more promptly and properly, to any catastrophic
situation.
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Figure 1

ODE model

Graphical representation of the local model for a Zombie outbreak using ordinary differential 

equations (ODE). Nodes represent different elements (defined as agents in our simulation) that 

describe the main states of our model and the arrows connecting them represents their possible 

transitions between states. The respective rate for every transition appears denoted as constants using 

greek letters, accompanied with the amount of every necessary element to produce the changes of 

states
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Figure 2

Topology of conectivity between cities

Our model considered a peuso-explicit space within the dynamics occur. The size of each circle is 

proportional to the area of the corresponding city and the length of the lines is proportional to the 

length of the roads connecting them, length that is indicated by the number on the lines.
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Figure 3

Graphic representation of Kappa language

Panel A), representation of the initialization of an agent Person in Kappa. All the five sites for any 

Person are declared and every possible state for those sites is also shown. Panel B), example of a 

Kappa rule in which an S and a Z, represented by two persons with their site c in states s and z, 

respectively, are located in the same city ”c3” as denoted by the state c3 of its site l. By interacting, 

these agents form an S-Z complex by binding their sites i. Panel C), a possible resolution of the S-Z 

encounter in which the S is infected by Z, changing the state of his site c from s to i, and increasing the 

level of panic by changing the state of p from p1 to p2. To complete the infection process, a Virus 

agent is bound to I and Z is released.Pre
Pri

nts
Pre

Pri
nts



Pre
Pri

nts
Pre

Pri
nts



Figure 4

Average trajectories of the main elements

Statistical result of the 874 successful tries for the scenario with 30% of T and 8% of E. Left column 

represents global situation, meanwhile the right one describe the dynamic inside city c5. Panel A), 

elements I (red), D (cyan) and Z (black) are presented in the main graph, while S (green) is presented 

in the inset. Both I and Z show breaks at times coincident with the addition of T and E to the system. 

Panel B), levels of panic p1, p2 and p3 (black, cyan and red, respectively) are presented in the main 

graph. The special level p0 is presented in the inset (green). Panel C), number of free Carriers showing 

the collapse of the transportation system between cities. Panel D), elements I (red), D (cyan) and Z 

(black) are presented in the main graph, while S (green) is presented in the inset. Panel E), levels of 

panic p1, p2 and p3 (black, cyan and red, respectively) are presented on the main graph. The special 

level p0 is presented in the inset (green). Panel F), number of free Carriers at the connection paths 

from city c5 to cities c2, c4, c6 and c7 (green, red, black and cyan, respectively) present two major 

convexities that are consequent to the changes of panic levels.
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Table 1(on next page)

Predicted critical days

Estimated days in which countermeasures were sent to each city. In the case of T, the critical time to 

send the countermeasure was defined as the following day after the number of I reached 5% of the 

initial population for each city. E units were sent to each city at the following day when the number of 

Z reached 5% of the initial population for each city.
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Table 1. Predicted critical days

City c1 c2 c3 c4 c5 c6 c7 c8 c9 c0
Treatment 3 4 5 6 6 7 7 8 8 9

Exterminators 4 5 6 7 6 8 7 8 9 9

Estimated days in which countermeasures were sent to each city. In the case of T, the critical time to
send the countermeasure was defined as the following day after the number of I reached 5% of the
initial population for each city. E units were sent to each city at the following day when the number of
Z reached 5% of the initial population for each city.

Table 2. Percentage of successful tries

Treatment
Exterminators 30 40 50 60 70

0.5 0.00 0.00 0.00 0.00 0.00
1.0 0.00 0.09 0.19 1.13 1.39
2.0 1.96 2.62 3.53 5.87 15.97
4.0 11.06 13.18 16.00 16.99 20.54
8.0 81.68 81.25 79.50 75.49 72.77

Percentage of successful tries for each scenario, in which there are not I, D, Z or Ei elements. All
numbers in the treatment row and in the exterminator column represent their relative percentage to the
initial population of each city.
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Table 3(on next page)

Average percentage of survivals

Average percentage of survival people for each scenario. Only the number of persons in successful 

tries is shown.
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Table 3. Average percentage of survivals

Treatment
Exterminators 30 40 50 60 70

0.5 0.00 0.00 0.00 0.00 0.00
1.0 0.00 0.23 0.51 0.67 0.78
2.0 0.53 0.78 0.94 1.18 1.66
4.0 1.48 1.86 2.27 2.76 3.01
8.0 3.75 4.45 5.03 5.48 6.30

Average percentage of survival people for each scenario. Only the number of persons in successful tries
is shown.
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